Kinetic networks of differentiation cascades identify key
regulatory nodes and transcription factor functions
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Transcription Factor Nobel Prizes
(Question-driven science and well-designed screens)

Q: Which Drosophila genes are important for developmental patterning?

1995: Classic genetics (perturb, observe, map) identifies
proteins (>50% were TFs!) critical for Drosophila development

Q: Can we reprogram differentiated cells to a pluripotent state?

2012: Brute force candidate gene screen. Transduce 24 genes
that are specifically expressed in embryonic stem cells into
fibroblasts. Systematically narrow down the list: Oct3/4, Klf4,
Sox2, and c-Myc (all TFs!)



Transcription dysregulation alters developmental patterning

pseudocolored flies: Justin Crocker, Ed Lewis, Nicolas
Gompel, and Welcome Bender



Classic Genetics: Perturb and Map

pseudocolored flies: Justin Crocker, Ed Lewis, Nicolas
Gompel, and Welcome Bender

pseudocolored SEM heads: Jirgen Berger



Classic genetics (perturb, observe, map) found that
Transcription Factors control developmental patterning

enzymes
_cell adhesion

cell signal and
receptors; | factors

Figure 3. Cellular Function of Heidelberg Mutations. Based on the sequence of 75 cloned genes, most of the loci

identified in Heidelberg encode transcription factors, or cell signals and receptors.

Eric Weischaus, Nobel Lecture 1995
Prize shared with Christiane Nusslein-Volhard & Ed Lewis



Transcription factors drive changes in cell identity

Oct4
Sox2
Klf4
c-Myc

Fibroblast iPSC

Brute force screening approach:
express many genes in combination until we get iPSCs

Takahashi & Yamanaka, Cell 2006
2012 Nobel Prize shared with John Gurdon



Transcription factors drive changes in cell identity
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Fibroblast

Takahashi & Yamanaka, Cell 2006
2012 Nobel Prize shared with John Gurdon



Which TFs and regulatory elements are important
in regulatory cascades?
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What are the step(s) in transcription
that each key TF regulates?

Chromatin

: Spt6 .

GTFs
productive

elongation

RNA Pol Il recruitment

RNA Pol Il initiation

RNA Pol Il pausing

NELF/

RNA Pol Il pause release
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Possible approaches and considerations

ChiIP-seq all the TFs throughout the cascade, but which
TFs?

ATAC-seq gives us putative regulatory elements, but
which TFs are binding/dissociating during the cascade?

RNA-seq quantifies changes in gene expression, but
detection is delayed depending on RNA turnover rate
and accumulation rate over basal RNA levels.

Which time points do we choose?

Which models can we genetically manipulate to validate
candidate TFs and elements?



Outline

+ Mechanistic insights from genomics-derived
gene regulatory networks

+ Rapid protein degradation to study transcription
factor interaction



Kinetic networks identify key regulatory nodes and
transcription factor functions in early adipogenesis
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Adipogenesis of 313-L1 cells




Adipogenesis of 313-L1 cells
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Experimental Design

Glucocorticoid receptor agonist
cAMP agonist
Insulin receptor agonist

6 days

3T3-L1 preadipocyte fibroblast Mature adipocycte
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Transposase Hypersensitivity
(ATAC-seq)



Transposase Hypersensitivity
(ATAC-seq)

A general measure of chromatin structure.



Transposase Hypersensitivity
(ATAC-seq)

ATAC peaks and DNA motifs can be used to infer
TF binding (i.e. if chromatin is accessible and

contains a binding sequence, then a TF may be
bound)



Transposase Hypersensitivity
(ATAC-seq)

Buenrostro, et. al. Nature Methods, 2013



Transposase Hypersensitivity
(ATAC-seq)
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Buenrostro, et. al. Nature Methods, 2013



Transposase Hypersensitivity
(ATAC-seq)
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Buenrostro, et. al. Nature Methods, 2013



PRO-seq detects nascent RNA

e

Kwak, et. al. Science, 2013



Precision Genomic-Run On
(PRO-seq)

Run on transcriptionally engaged
Polymerases with terminating
biotinylated NTPs.

Kwak, et. al. Science, 2013



Precision Genomic-Run On
(PRO-seq)

Run on transcriptionally engaged
Polymerases with terminating
biotinylated NTPs.

N "\ ’\Q Shear the nascent RNA and

purify the biotinylated species.

Kwak, et. al. Science, 2013



Precision Genomic-Run On
(PRO-seq)

Run on transcriptionally engaged
Polymerases with terminating
biotinylated NTPs.

N "\ ’\Q Shear the nascent RNA and

purify the biotinylated species.

Sequence the 3’end of the RNA to map the strand-specific
location of transcribing RNA Polymerase.

-
Kwak, et. al. Science, 2013




condition |

condition 2

PRO-seq measures immediate responses

activated

repressed



~200,000 peaks

~30,000 genes

ATAC signal

PRO signal
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~200,000 peaks

~30,000 genes

ATAC signal

PRO signal
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Interesting ATAC-seq peaks are dynamic over the time course
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Normalized ATAC signal
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Normalized ATAC signal
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Normalized ATAC signal
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Bidirectional transcription signatures from PRO-seq
iIndependently identifies putative regulatory regions
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Motifs enriched within dynamic ATAC and bidirectional PRO peaks
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CEBP, KLF, GR, and AP1 motifs associate w/ increasing chromatin accessibility
TWIST and SP associate w/ decreasing chromatin accessibility
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CEBP, KLF, GR, and AP1 motifs associate w/ increasing chromatin accessibility
TWIST and SP associate w/ decreasing chromatin accessibility
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Genes also have distinct activation and repression kinetics
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Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)
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Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)
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Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)

2
2

1
1

-1 0
0

~1

Normalized PRO signal

-2
Normalized ATAC signal

-2

RE — TU

gene PROf & time delay & gene’s motif within peak
(P

ATAC peak* RO prior ATAC) AACATCT .
(repressor binding) clVILVIVeAx



Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)
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Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)
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Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)
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Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)
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Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)
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Linking direct functional interactions between
Regulatory Elements (RE) and Genes (TU)
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We are interested in highly connected early
response transcription factors

‘ regulatory element

gene

tr aZSbindin/

trans binding /

L TTTT

TF2 targets

cis activation

TF1 targets TF2

TF3

TF4
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TF3 targets

cis repression

cis activation

TF4 targets
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TFA4/TF5 target
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TWIST2 is active early and transiently
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TWIST2 is a highly connected early response gene
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TWIST2 is a highly connected early response gene
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Next step: perturb and observe
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Twist2 depletion and over expression in 3T3-L1
cells modulate adipogenesis
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Twist2 heterozygote mice have increased
differentiation of ex vivo cultured white adipocytes
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Twist2+- mice have a near absence of subcutaneous fat

Skin
Wild Type Twist2+-

Dermis

Subcut.
Fat




In brown fat

Twist2-- mice have reduced lipid droplets

Interscapular BAT
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Can we reconcile the in vitro and in vivo results?

Recall: in vitro Twist2 restricts adipogenesis/lipid droplet formation
in vivo Twist2 promotes adipogenesis/lipid droplet formation



Build up of fatty acids cause ER stress, which can
lead to cell exhaustion and death

Adipocyte
during
Lipid Droplet fasting
TG FA " " " ' "
DGAT1 activation during lipolysis
leads to re-esterification of fatty
. o acids to prevent ER damage
Lipid Droplet
TG FA
FA Ea

DGAT1 Knockout i

Chitraju, et al. Cell Metabolism, 2017



A metaphor to communicate the in vitro and in vivo results:
climbing Mount Development to become a mature adipocyte -/+ Twist2

mature adipocyteg

Twist2 is the bricks. Twist2 slows Y
preadipocyte development to
keep pace with other tissues.

preadipocyte,
-0

skin



Twist2 slows you down in vitro, but you form adipocytes;
resources are provided, just as we change out the media and split cells




Preadipocytes thrive without Twist2 slowing them down in vitro;
adipogenesis and fat deposition are more efficient




Supporting tissues have resources to ascend Mount Development in vivo;
Twist2 forces you to pace with other tissues and you form adipocytes




Healthy adipocytes do not develop in vivo without Twist2;
preadipocytes ascend too quickly and tissues can not provide support

preadipocyte

5

skin 0



What are the molecular functions of these key TFs?

‘ regulatory element

gene

tr aismndin/

TF1 targets TF2

TF2 targets TF3 TF4 TF5

cis repression cis activation

TF3 targets TF4 targets TF5 targets

TF4/TF5 target



Simplified networks identify genes that are primarily
regulated by a single factor
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Coupling rapidly inducible systems to nascent transcript
profiling informs on TF function

Chromatin

: Spt6 .

GTFs
productive

elongation

RNA Pol Il recruitment

RNA Pol Il initiation

RNA Pol Il pausing

NELF/

RNA Pol Il pause release



Coupling rapidly inducible systems to nascent transcript
profiling informs on TF function

Chromatin

: Spt6 .
RNA Pol i —t
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elongation

RNA Pol Il recruitment 10-40 min Estrogen

Max at 10 min.

RNA Pol Il initiation

RNA Pol Il pausing

NELF/
\_/ ER: Hah et. al., Cell, 2011

RNA Pol Il pause release



Coupling rapidly inducible systems to nascent transcript
profiling informs on TF function
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Coupling rapidly inducible systems to nascent transcript
profiling informs on TF function
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Coupling rapidly inducible systems to nascent transcript
profiling informs on TF function
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Coupling rapidly inducible systems to nascent transcript
profiling informs on TF function
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We can determine the step(s) that a TF regulates by
quantifying RNA polymerase density changes In genic regions
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Simplified networks identify genes that are primarily
regulated by a single factor

TFs | AP1
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GR preferentially regulates pause release
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GR preferentially regulates pause release
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RNA Polymerase Density

GR preferentially regulates pause release in another system:
Leukemia cells treated with dexamethasone for 1 hour
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Simplified networks identify genes that are primarily
regulated by a single factor

TFs
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RNA Polymerase Density

SP preferentially regulates initiation rate
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Adipogenesis Network Conclusions

Kinetic ATAC and PRO data can be used to infer key
functional interactions between regulatory elements and
genes.

- TWIST2 is a highly connected node in the adipogenesis

network.

- TWISTZ2 deletion cause an absence of subcutaneous fat

deposits.
GR regulates pause release
SP regulates initiation

Rapidly inducilbe systems are necessary to provide these
mechanistic insights...
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Challenges with RNAI depletion and knock outs

* Chronic depletion can result in compensatory
feedback.

 Secondary (and post secondary) effects can dominate
after extended depletion.

 Extended depletion can be lethal.

* Degron tagging is an attractive alternative
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What does a car’s radiator do?

Speed Tire Pressure Temperature

C

C

>

Assess gauges and car phenotypes on day 4

Speed Tire Pressure Temperature
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Control

The radiator keeps the car healthy;
The radiator affects the starter, speed, tire pressure, and temperature
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What does a car’s radiator do?

Speed Tire Pressure Temperature
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Monitor gauges and car phenotypes continually

Speed Tire Pressure Temperature
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Control

The radiator directly regulates temperature;
all other effects are indirect effects of the car catching fire.



dTAG system
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Nabet, et. al., Nat Chem Biol. 2018
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