library(bigWig) library(dplyr) library(zoo) library(lattice) library(stringr) library(GenomicRanges) ## genecoords is the usual pTA file with gene start and body get_pause_window_Siepel <- function(genecoords) { pauseFile = genecoords pauseFile = subset(pauseFile, abs(end - start + 1) > 200) pauseFile[pauseFile$strand == '-', ]$start = pauseFile[pauseFile$strand == '-', ]$end - 200 pauseFile[pauseFile$strand == '+', ]$end = pauseFile[pauseFile$strand == '+', ]$start + 200 gr <- GRanges(seqnames = Rle(pauseFile$chr), ranges = IRanges(start = pauseFile$start, end = pauseFile$end), strand = Rle(pauseFile$strand)) gr$gene_id = pauseFile$gene gr$name = pauseFile$gene return (gr) } ## genecoords is the usual pTA file with gene start and body get_body_window_Siepel <- function(genecoords) { bodyFile = genecoords bodyFile = subset(bodyFile, abs(end - start + 1) > 1250) bodyFile[bodyFile$strand == '-', ]$end = bodyFile[bodyFile$strand == '-', ]$end - 1250 bodyFile[bodyFile$strand == '+', ]$start = bodyFile[bodyFile$strand == '+', ]$start + 1250 gr <- GRanges(seqnames = Rle(bodyFile$chr), ranges = IRanges(start = bodyFile$start, end = bodyFile$end), strand = Rle(bodyFile$strand)) gr$gene_id = bodyFile$gene gr$name = bodyFile$gene return (gr) } ############################################################################################ ## find.pause.regions ############################################################################################ #' Get start, end coordinates of pause window and gene body for each gene using the bigWig files representing all conditions x replicates. The start and end coordinates are treated as transcription start site (TSS) and transcription termination site (TTS) respectively. The pause window has a 50bp size around the peak signal. The gene body starts from pause window end and ends at TTS. #' @param bed.input A bed6 file containing genes of interest, where start and end are transcription start site and transciption termination site respectively. #' @param combined.plus.bw bigWig file for the plus strand data #' @paranputm combined.minus.bw bigWig file for the minus strand data #' @param upwardThreshold #' @return A bed6 file containing start, end coordinates of pause window (50bp in size), gene body () starting from seventh column. #' @export #' @examples #' master.pTA.coords.file = 'mastercoords.bed' # bed file created from primary Transcript Annotation. #' pTA <- read.table(master.pTA.coords.file) #' df.pause.body <- find.pause.regions(pTA, bw.plus, bw.minus) # bw.* files are corresponding bigWig files. find.pause.regions <- function(bed.input, combined.plus.bw, combined.minus.bw, searchWindow = 200, rollingwindowsize = 50, bodyOffsetFromPause = 500) { #find TSS of each gene bed.input[,7] <- bed.input[,2] # set pause.start to start bed.input[bed.input[,6] == '-',7] <- bed.input[bed.input[,6] == '-',3] # set pause.start of '-' strand to end(-) of mastercoords.bed bed.input[,8] <- bed.input[,7] # pause.end #bed.input[,8] <- bed.input[,7] + 1 # OLD pause.end #take searchWindow sized window centered around TSS tss.df <- bed.input[,c(1,7,8,4,7,6)] # TSS in tss.df is now pause.start from bed.input # PLUS STRAND tss.df[tss.df[,6] == '+', 3] = tss.df[tss.df[,6] == '+',2] + searchWindow # 200bp window (300bp for GRO-seq) # MINUS STRAND tss.df[tss.df[,6] == '-', 2] = tss.df[tss.df[,6] == '-', 2] - searchWindow # 200bp window (300bp for GRO-seq) # OLD CODE, DON'T USE - thousand base pair window here #tss.df[,3] = tss.df[,2] + 500 #tss.df[,2] = tss.df[,2] - 500 colnames(tss.df) <- c('chr','start','end','gene','TSS','strand') #find maximum signal within window - this is the pause summit #read through bigWig vignette to understand probeQuery dat.x = bed6.step.probeQuery.bigWig(combined.plus.bw, combined.minus.bw, tss.df, step = 1, abs.value=T,as.matrix = TRUE, op = "sum", follow.strand = FALSE) dat.x[is.na(dat.x)] <- 0 # 50bp window rolling mean, dat.x.win = t(apply(dat.x, 1, function(x){rollapply(x, width = rollingwindowsize, FUN = mean, by = 1, by.column = FALSE,align = "left")})) index.max = apply(dat.x.win, 1, which.max) the.max = apply(dat.x.win, 1, max) #take 50 bp window around pause summit - this is the pause region pauseregion.df = tss.df # this is already 1000bp window # use maximum index of plus and minus strands separately # set pause start column of + and - strands to existing starts + index.max of bed6.stepQuery pauseregion.df[2][pauseregion.df$strand == '-',] = pauseregion.df[2][pauseregion.df$strand == '-',] + index.max[pauseregion.df$strand == '-'] pauseregion.df[2][pauseregion.df$strand == '+',] = pauseregion.df[2][pauseregion.df$strand == '+',] + index.max[pauseregion.df$strand == '+'] pauseregion.df[3] = pauseregion.df[2] + rollingwindowsize #define 'body region' as end of pause region to the end of the gene (strand specific) body.df = bed.input[,c(1:4,7,6)] colnames(body.df) <- c('chr','start','end','gene','TSS','strand') body.df[body.df$strand == '+',2] = pauseregion.df[pauseregion.df$strand == '+',3]+bodyOffsetFromPause # pause region end + 1 body.df[body.df$strand == '-',3] = pauseregion.df[pauseregion.df$strand == '-',2]-bodyOffsetFromPause # pause region end - 1 final.df <- cbind(bed.input[,c(1:4,7,6)],pauseregion.df[,2:3],body.df[,2:3]) colnames(final.df) <- c('chr','start','end','gene','TSS','strand','pause.start','pause.end','body.start','body.end') # fix edge cases for (i in seq(1:nrow(final.df))) { if (final.df[i,]$strand == "-" && final.df[i,]$body.start > final.df[i,]$body.end) { final.df[i,]$body.start = final.df[i,]$body.end - 500 } else if (final.df[i,]$strand == "+" && final.df[i,]$body.start > final.df[i,]$body.end) { final.df[i,]$body.end = final.df[i,]$body.start + 500 } } return(final.df) } ############################################################################################ ## total.region.density ############################################################################################ #' appends "pause sum" and "body average" columns to a bed6 object created by [find.pause.regions()]. It also appends "pause index" column which is the ratio of "pause sum" and "body average". #' @param df.input bed6 file created by [find.pause.regions()] containing the start and end of pause window and gene body for genes of interest. #' @param cond1.plus.bw bigWig file containing data from plus strand in cond1 ("cond1" is baseline.) #' @param cond1.minus.bw bigWig file containing data from minus strand in cond1 ("cond1" is baseline.) #' @param cond1 name of the condition (baseline) #' @param cond2.plus.bw bigWig file containing data from plus strand in cond2 ("cond1" is the condition of interest being compared against the baseline.) #' @param cond2.minus.bw bigWig file containing data from minus strand in cond2 ("cond1" is the condition of interest being compared against the baseline.) #' @param cond2 name of the condition of interest #' @return the input bed6 object appended with columns containing pause sum, body average, pause index for each gene present in the input file. #' @export #' @examples #' see documentation of [find.pause.regions()] to see how bed.object was created. #' df.input = find.pause.regions(bed.object, bw.plus, bw.minus) #' df.region.density <- total.region.density(df.input, cond1.plus.bw, cond1.minus.bw, "cond1", #' cond2.plus.bw, cond2.minus.bw, "cond2") total.region.density <- function(df.input, cond1.plus.bw, cond1.minus.bw, cond1 = 'cond1', cond2.plus.bw, cond2.minus.bw, cond2 = 'cond2', useColnames=F) { #isolate pause and body regions into their own objects if (useColnames) { pauseregion.df <- df.input[,c("chr","pause.start","pause.end","gene","score","strand")] body.df <- df.input[,c("chr", "body.start", "body.end", "gene", "score", "strand")] } else { pauseregion.df <- df.input[,c(1,7,8,4,5,6)] body.df <- df.input[,c(1,9,10,4,5,6)] } #calculate polymerase density for pause region (sum) and body region (avg) for each condition cond1.df <- df.input cond1.df$pause.sum = bed6.region.bpQuery.bigWig(cond1.plus.bw,cond1.minus.bw, pauseregion.df, op = "sum", abs.value=T) cond1.df$body.avg = bed6.region.bpQuery.bigWig(cond1.plus.bw,cond1.minus.bw, body.df, op = "avg", abs.value=T) cond1.df$cond = cond1 cond2.df <- df.input cond2.df$pause.sum = bed6.region.bpQuery.bigWig(cond2.plus.bw,cond2.minus.bw, pauseregion.df, op = "sum", abs.value=T) cond2.df$body.avg = bed6.region.bpQuery.bigWig(cond2.plus.bw,cond2.minus.bw, body.df, op = "avg", abs.value=T) cond2.df$cond = cond2 #combine objects for each condition final.df <- rbind(cond1.df,cond2.df) final.df$pause.index = final.df[,'pause.sum'] / final.df[,'body.avg'] return(final.df) } ############################################################################################ ## find.density.across.windows ############################################################################################ #' @param df.input bed6 file created by [find.pause.regions()] containing the start and end of pause window and gene body for genes of interest. find.density.across.windows <- function(df.input,cond1.plus.bw, cond1.minus.bw, start_bp=0, end_bp=5000, windowsize_bp=200, stepsize_bp=50, useColnames=F) { #isolate pause and body regions into their own objects if (useColnames) { #pauseregion.df <- df.input[,c("chr","pause.start","pause.end","gene","score","strand")] body.df <- df.input[,c("chr", "body.start", "body.end", "gene", "score", "strand")] } else { #pauseregion.df <- df.input[,c(1,7,8,4,5,6)] body.df <- df.input[,c(1,9,10,4,5,6)] } colnames(body.df) = c("chr", "body.start", "body.end", "gene", "score", "strand") body.df.positive = subset(body.df, strand == "+") body.df.negative = subset(body.df, strand == "-") result_df = c() currPosition = start_bp while(currPosition <= end_bp) { working.df.positive = subset(body.df, strand == "+" & body.end >= body.start + currPosition + windowsize_bp - 1) working.df.negative = subset(body.df, strand == "-" & body.start <= body.end - (currPosition + windowsize_bp - 1)) if (nrow(working.df.positive) + nrow(working.df.negative) < 10) { print(sprintf("received %d (+) strand, %d (-) strand genes at start + %d, windowsize: %d. Stopping search", nrow(working.df.positive), nrow(working.df.negative), currPosition, windowsize_bp)) break } # set body start and end for (+) ve stranded genes working.df.positive$body.start = working.df.positive$body.start + currPosition working.df.positive$body.end = working.df.positive$body.start + windowsize_bp - 1 # set body start and end for (-) ve stranded genes working.df.negative$body.end = working.df.negative$body.end - currPosition working.df.negative$body.start = working.df.negative$body.end - (windowsize_bp - 1) working.df.positive$body.avg = bed6.region.bpQuery.bigWig(cond1.plus.bw,cond1.minus.bw, working.df.positive, op = "avg", abs.value=T) working.df.negative$body.avg = bed6.region.bpQuery.bigWig(cond1.plus.bw,cond1.minus.bw, working.df.negative, op = "avg", abs.value=T) working.df.positive$bpfromstart = currPosition working.df.positive$bpend = currPosition + windowsize_bp - 1 working.df.negative$bpfromstart = currPosition working.df.negative$bpend = currPosition + windowsize_bp - 1 #working.df.positive$bpWindow = sprintf("%d_to_%d", currPosition, currPosition + windowsize_bp - 1) #working.df.negative$bpWindow = sprintf("%d_to_%d", currPosition, currPosition + windowsize_bp - 1) result_df = rbind(result_df, working.df.positive, working.df.negative) currPosition = currPosition + stepsize_bp } return(result_df) } ############################################################################################ ## generate.composite.df ############################################################################################ #' creates composite signal starting from -upstream to +downstream based upon bigWig files passed per condtion. #' @param df.input a bed6 input file - simular to output of [find.pause.regions()] - containing pause.start and pause.end coordinates at seventh and eighth columns. #' @param cond1.plus.bw bigWig file for plus strand data in cond1 (baseline). #' @param cond1.minus.bw bigWig file for plus strand data in cond1 (baseline). #' @param cond1 name of cond1 (baseline) to be used as to fill cell values under `cond` column in the returned object, #' @param cond2.plus.bw bigWig file for plus strand data in cond2 (cond2 being the condition of interest being compared against baseline) #' @param cond2.minus.bw bigWig file for minus strand data in cond2 (cond2 being the condition of interest being compared against baseline) #' @param cond2 name of the condition which is being compared against baseline #' @param upstream the number of bases upstream from pause summit (default 350) #' @param downstream the number of bases downstream from pause summit (default 1400) #' @param roll,avg the rolling size used in rollmean() to calculate the composites (default 10) #' @param step a factor used to define the ends of genes by (step * roll.avg)/2 #input: output dataframe from find.pause.regions and plus / minus .bigWigs for each condition #output: dataframe with composite polymerase density at each position within window and for each condition generate.composite.df <- function(df.input, cond1.plus.bw, cond1.minus.bw, cond1 = 'cond1', cond2.plus.bw, cond2.minus.bw, cond2 = 'cond2', useColnames = F, upstream = 350, downstream = 1400, roll.avg = 10, step = 5) { #define new dataframe defined by upstream and downstream windows around pause summit if (useColnames) { print("using column names inside generate.composite.df()") window.df <- df.input[,c("chr","pause.start","pause.end","gene","score","strand")] } else { window.df <- df.input[,c(1,7,8,4,5,6)] } #window.df = df.input[,c(1,7,8,4,5,6)] window.df[,2] = rowMeans(window.df[,2:3]) # center point between 2 and 3. window.df[,3] = window.df[,2] + 1 # end is start + 1 window.df = fiveprime.bed(window.df, upstreamWindow = upstream, # set start to (start - upstream - 1) downstreamWindow = downstream) # set end to (end + downstream + 1) coordin.start = (-upstream - 1) + (step * roll.avg)/2 coordin.end = downstream - (step * roll.avg)/2 #calculate polymerase density throughout window for each condition tss.matrix.cond1 = bed6.step.bpQuery.bigWig(cond1.plus.bw, cond1.minus.bw, window.df, step = step, abs.value=T, as.matrix=TRUE, follow.strand=TRUE) composite.lattice.cond1 = data.frame(seq(coordin.start, coordin.end, by = step), rollmean(colMeans(tss.matrix.cond1), roll.avg), cond = cond1, stringsAsFactors = FALSE) colnames(composite.lattice.cond1) = c('x', 'est', 'cond') tss.matrix.cond2 = bed6.step.bpQuery.bigWig(cond2.plus.bw, cond2.minus.bw, window.df, step = step, abs.value=T, as.matrix=TRUE, follow.strand=TRUE) composite.lattice.cond2 = data.frame(seq(coordin.start, coordin.end, by = step), rollmean(colMeans(tss.matrix.cond2), roll.avg), cond = cond2, stringsAsFactors = FALSE) colnames(composite.lattice.cond2) = c('x', 'est', 'cond') composite.df <- rbind(composite.lattice.cond1,composite.lattice.cond2) composite.df$x <- as.numeric(composite.df$x) return(composite.df) } ############################################################################################ ## plot.composites ############################################################################################ #' uses output of [generate.composite.df()] to generate plot of composite signal. #' @param dat output of [generate.composite.df()] #' @param fact name of the factor in the condition being compared against #' @param comp a small string to describe the condition being made #' @param summit a string which will be used as a xlabel - distance from #' @param y.low the lower limit of the y axis #' @param y.high the max limit of the y axis. If not provided, it estimates it using the maximum estimate present in input data #' @param col.lines colors to be used for drawing the composites #' @return NULl plot.composites <- function(dat, fact = 'GR', comp='20.v.0', summit = 'TSS', y.low =0, y.high = NULL, col.lines = c(rgb(0,0,1,1/2), rgb(1,0,0,1/2), # rgb takes r,g,b and transparency values rgb(0.1,0.5,0.05,1/2), rgb(0,0,0,1/2), rgb(1/2,0,1/2,1/2), rgb(0,1/2,1/2,1/2), rgb(1/2,1/2,0,1/2))) { if (length(y.high)==0) { y.high <- max(dat$est) * 1.05 } print(sprintf("will use %f as ylimit", y.high)) filename = paste('composite_PolII_density_around_',fact,'_genes_',comp,'.pdf', sep='') pdf(filename, width=3.4, height=3.4) print(xyplot(est ~ x, group = cond, data = dat, # plot estimate against x coordinate type = 'l', #lin e scales=list(x=list(cex=1,relation = "free"), y =list(cex=1, relation="free",axs = 'i')), # axis scales are free, axs="i" for exact data range col = col.lines, # color auto.key = list(points=F, lines=T, cex=1.0,font=1), # suitable legend for the grouping variable (legend will be a line) par.settings = list(strip.background=list(col="grey85"), # add settings while plotting. background strip is of a color. superpose.symbol = list(pch = c(16), # symbols to be used while plotting, pch => plot character col=col.lines, cex =0.5), superpose.line = list(col = col.lines, lwd=c(3), # lwd is line width, lty is line type lty = c(1))), par.strip.text=list(cex=0.9, font=1, col='black'), # param to define strp.text appearance aspect=1.0, # aspect ratio between=list(y=0.5, x=0.5), # space between panels lwd=3, ylab = list(label = "RNA Polymerase Density", cex =1.0,font=1), xlab = list(label = paste("Distance from ", summit, sep=''), cex =1.0,font=1), xlim = c(-80,950), ylim = c(y.low, y.high), panel = function(x, y, ...) { panel.xyplot(x, y, ...) # panel.abline(h = 0, lty =1, lwd = 1.5, col = 'grey80') # panel.abline(v = -25, lty =2, lwd = 0.5, col = 'red') # panel.abline(v = 25, lty =2, lwd = 0.5, col = 'red') } ) ) dev.off() print(sprintf("saved %s", filename)) } ############################################################################################ ## plot.bw.plots ############################################################################################ #' creates a plot containing box and whisker plot, violin plot and scatter plot of the change in pause indices between a condition of interest and a baseline. #' @param input.df an object containing pause indices for each gene of interest (oer condition,) Ideally, an output of [total.region.density()] #' @param cond1 name of the baseline condition #' @param cond2 nqme of the condition which is being compared against baseline #' @param color color to be used in the violin plot #' @return NULL plot.bw.plots <- function(input.df, cond1 = 'cond1', cond2 = 'cond2', color = 'lightblue') { plot.df <- data.frame(genes = unique(input.df$gene), fc = 0) for(i in 1:nrow(plot.df)) { gene <- plot.df$gene[i] plot.df$fc[i] <- input.df[input.df$gene == gene & input.df$cond == cond2,'pause.index'] / input.df[input.df$gene == gene & input.df$cond == cond1,'pause.index'] } # remove undefined values - Inf, -Inf, NaN #plot.df <- plot.df[!plot.df$fc %in% c(Inf,NaN,-Inf),] plot.df <- plot.df[is.finite(plot.df$fc),] plot.df$x <- 1 # calculate ylimits log2.fc = log2(plot.df$fc) log2.fc = log2.fc[is.finite(log2.fc)] log2.ylim.min = min(log2.fc) - 0.03 log2.ylim.max = max(log2.fc) + 0.03 print(sprintf("box-whisker-violin: setting min(ylim): %f, max(ylim): %f", log2.ylim.min, log2.ylim.max)) filename = paste0('pause.index.fc.',cond2,'.v.',cond1,'.pdf') pdf(filename, width=2.7) trellis.par.set(box.umbrella = list(lty = 1, col="#93939380", lwd=2), #whisker plot attributes box.rectangle = list(col = '#93939380', lwd=1.6), # boxplpt attributes plot.symbol = list(col='#93939380', lwd=1.6, pch ='.')) # symbol type print(bwplot(log2(fc) ~ x, data = plot.df, between=list(y=1.0, x = 1.0), scales=list(x=list(draw=FALSE),relation="free",rot = 45, alternating=c(1,1,1,1),cex=1,font=1), # rot is rotation, # alternating is whether labels should alternate between one panel to another xlab = '', #main = "Pause Index (PI) Ratio", ylab = substitute(paste('log'[2]*'',nn), list(nn=paste0('(',cond2,' PI / ',cond1,' PI)'))), # create an expression using nn horizontal = FALSE, col= 'black', aspect = 2, #ylim = c(-1.52, 1), ylim = c(log2.ylim.min, log2.ylim.max), par.settings=list(par.xlab.text=list(cex=1.2,font=1), par.ylab.text=list(cex=1.2,font=1), par.main.text=list(cex=1.2, font=1), plot.symbol = list(col='black', lwd=1.6, pch =19, cex = 0.25)), strip = function(..., which.panel, bg) { #bg.col = c("#ce228e" ,"grey60", "#2290cf","grey90") strip.default(..., which.panel = which.panel, bg = rep(bg.col, length = which.panel)[which.panel]) }, panel = function(..., box.ratio, col) { panel.abline(h = 0, col = 'grey45', lty = 2) panel.violin(..., col = color, varwidth = FALSE, box.ratio = box.ratio, outer = FALSE) panel.stripplot(..., col='#54545380', do.out=FALSE, jitter.data=TRUE, amount = 0.2, pch = 16) panel.bwplot(..., pch = '|', do.out = FALSE) })) dev.off() print(sprintf("saved %s", filename)) } ############################################################################################ ## merge.pbody.deseq2 ############################################################################################ #' a helper function to merge two data frames on gene names. ASSUMES that both data frames have rownames set to gene names. #' @param df.pause.body a data frame containing start and end coordinate for pause windows and gene body. Ideally, an output of [find.pause.regions()] #' @param deseq2.df a data object created from running DESeq2 workflow and containing response status of genes. #' @return an object merged on gene names having columns in order of df.pause.body followed by deseq2.df merge.pbody.deseq2 <- function(df.pause.body, deseq2.df) { # rownames are assumed to be set to gene names merged.df = merge(df.pause.body, deseq2.df) merged.df = merged.df[,c(colnames(df.pause.body),colnames(deseq2.df))] return(merged.df) } ############################################################################################ ## merge.pbody.bedfile ############################################################################################ #' a helper function to merge two data frames on gene names. ASSUMES that both data frames have rownames set to gene names. #' @param df.pause.body a data frame containing start and end coordinate for pause windows and gene body. Ideally, an output of [find.pause.regions()] #' @param bed.df a data object containing coordinates of genes in a particular condition (activated/repressed). The column names are "chr", "bed.body.start", "bed.body.end", "gene", "type", "strand". The type can be - activated or repressed or any other values #' @return an object merged on gene names having columns in order of df.pause.body followed by that of b.df merge.pbody.bedfile <- function(df.pause.body, bed.df) { # rownames are assumed to be set to gene names merged.df = merge(df.pause.body, bed.df, by="row.names", all=T) merged.df = merged.df[,c(colnames(df.pause.body),colnames(bed.df))] return(merged.df) } ############################################################################################ ## run.plotting.steps ############################################################################################ #' run the plotting steps given a pause.body object (with desired genes) and pair of bigWigs from two conditions being compared #' @param df.pausebody an object containing start, end coordinates of pause window and gene body. #' @param cond1.name name of baseline condition #' @param bw.cond1.plus bigWig file containing plus strand data from baseline condition #' @param bw,cond1.minus bigWig file containing minus strand data from baseline condition #' @param cond2.name name of the condition which is being compared against the baseline condition #' @param bw.cond2.plus bigWig file containing plus strand data from the condition which is being compared against baseline condition #' @param bw.cond2.minus bigWig file containing minus strand data from the condition which is being compared against baseline condition' #' @param factor.name descriptive name of the factor involved in the comparison of condition to baseline #' @param color.names to be used as colors for plotting. The order of colors chosen will be same as the alphabetical order of names of two conditions #' @param fileidentifier to be used as substring in filenames while creating various objects #' @return NULL run.plotting.steps <- function(df.pausebody, cond1.name, bw.cond1.plus, bw.cond1.minus, cond2.name, bw.cond2.plus, bw.cond2.minus, factor.name="efferocytosis", fileidentifier = NULL, useColnames = F, color.names=c(rgb(0,0,1,1/2), rgb(1,0,0,1/2))) { df.composite = generate.composite.df(df.pausebody, bw.cond1.plus, bw.cond1.minus, cond1.name, bw.cond2.plus, bw.cond2.minus, cond2.name, useColnames) # plot composites trim.cond1.name = str_replace_all(str_trim(cond1.name), " ", "") trim.cond2.name = str_replace_all(str_trim(cond2.name), " ", "") if (is.null(fileidentifier)) { fileidentifier = sprintf("%s.v.%s", trim.cond2.name, trim.cond1.name) } #df.composite <- readRDS(sprintf("composite.%s.rds", fileidentifier)) saveRDS(df.composite, file=sprintf("composite.%s.rds", fileidentifier)) print(sprintf("saved composite.%s.rds", fileidentifier)) plot.composites(dat = df.composite, fact = factor.name, comp = fileidentifier, summit = 'Pause Peak', col.lines=color.names) # plot box and whisker for pause indices df.density <- total.region.density(df.pausebody, bw.cond1.plus, bw.cond1.minus, cond1.name, bw.cond2.plus, bw.cond2.minus, cond2.name, useColnames) saveRDS(df.density, file=sprintf("density.%s.rds", fileidentifier)) print(sprintf("saved density.%s.rds", fileidentifier)) plot.bw.plots(input.df = df.density, cond1 = cond1.name, cond2 = cond2.name, color = 'orange') }