Questions

Use the next 15+ minutes to answer and send me your responses: guertin@uchc.edu

1. Have you ever made high throughput sequencing (HTS) libraries?
2. Does your thesis project involve HTS experiments or analysis? -if so, please describe
3. Have you previously analyzed HTS data?

- If so, did you use the command line or web-based tools?

4. How would you rate your abilities in the terminal/command line?

- Rate 1 to 5: 1 = The Terminal...the 2004 movie starring "America's dad" Tom Hanks? (wow, my professor is hip to the contemporary cinematic features!); $5=$ my stack overflow name is shellHacker1976

5. How would you rate your abilities in R?

- Rate 1 to 5: 1 = I haven't had a lecture on " R " since kindergarten; 5 = statistics, parsing, figures...all the things.

6. Are you familiar with any programming languages? -if so, please list them
7. What type of computer and operating system will you be using for this course?

MEDS 5420: Molecular Genomics Practicum UCONN HEALTH
 Spring 2023 Mike Guertin

Why molecular genomics and not bioinformatics?

Human Genome Project

Sanger sequencing

Cost: 2.7 billion

Contemporary milestones in genomics

nature milestones

Genomic sequencing

Produced by:
Nature, Nature Genetics and
Nature Reviews Genetics
illumına

Functional Genomics

Genomics?!

$$
\text { structural } \text { enomics }
$$

Molecular Genomics: coupling classic molecular biology techniques to HTS for nucleic acid quantification

How do we begin to understand the genome?

 पमिए CECCACGYA
ACACCYA T로TCATㅜ ccra

CEACHACHCACCHACHACMACCACMATH

 HCCATCCATCCATHCCACTACTHCATACTAAACCCCGTCCCATA

Questions that can begin to be addressed with Molecular Genomics

- How much of the genome is functional?
- Where are the functional elements?
- How are elements organized 3 dimensionally?
- What constitutes the molecular makeup of regulatory regions?
- How do regulatory regions change throughout development, upon environmental perturbation, or in the presence of mutations?

Molecular genomics assays

High throughput sequencing costs drove the genomics revolution

Cost per Human Genome

High throughput sequencing technologies

Roche 454

Ion Torrent

ABI Solid

Long Read (> 1kb)

Oxford Nanopore

High throughput sequencing technology

Platform	Instrument	Reads/unit	Read Length (bp)	Read Type	Error Type
Illumina	NovaSeq 6000 S4	10,000,000,000	300	SR \& PE	substitution
Illumina	NextSeq 500 High-Output	400,000,000	300	SR \& PE	substitution
Illumina	HiSeq High-Output v4	250,000,000	250	SR \& PE	substitution
Illumina	GAllx	42,075,000	300	SR \& PE	substitution
Illumina	MiSeq v3	25,000,000	600	SR \& PE	substitution
Illumina	MiniSeq High-Output	25,000,000	300	SR \& PE	substitution
Ion	Proton I	60,000,000	200	SR	indel
Ion	PGM 314	400,000	400	SR	indel
PacBio	PacBio Sequel	370,000	20,000	NA	indel
PacBio	PacBio RS II (P6)	55,000	15,000	NA	indel
Roche 454	GS FLX+ / FLX	700,000	700	NA	indel
SOLiD	5500xI W	266,666,667	100	SR \& PE	A/T Bias
SOLiD	5500x\|	81,500,000	100	SR \& PE	A/T Bias
Oxford Nanopore	PromethION 48	depends on size (300 Gb total)	length of molecule up to 4,000,000	NA	sub/indel

Genomics at UConn

NovaSeq 6000 can sequence the equivalent of 48 human genomes per run at 30x coverage!

Illumina (formerly Solexa) Sequencing Technology: Clonal PCR colonies and Reversible Terminators

Solexa Technical Approach

DNA Clusters

- About 500 DNA
copies per cluster
- Each about 1 micron in diameter

Solexa digital image

controlled imaging: tens of millions of clusters in parallel

Illumina Sequencing Technology:
 Dye and Reversible Terminators

Illumina Sequencing Technology:
 Dye and Reversible Terminators

Add bases

Detect fluorescent base incorporated

Cleave fluorescent dye and terminating group

Illumina SBS updates:
 2 color imaging

Benefits:

Fewer images (2 vs 4):
= less data acquisition and processing time
$=$ faster sequencing.

User experience unaffected

Current acquisition method for all Illumina devices

Illumina SBS updates: patterned flow cell

Distinct, Ordered Nanowell Design

Figure 1. Advanced Patterned Flow Cell Design Enables Maximum Throughput.
Patterned flow cells contain billions of nanowells at fixed locations, providing even cluster spacing and uniforr density.
Currently used on HiSeq 3000/4000, NovaSeq

Benefits:

- Location of clusters known
- Less cluster overlap
- Exclusion Amplification (ExAmp) allows multiple clusters from a single molecule

Pitfalls:

- Nanowells favor clustering small adapter/adapter products
- ExAmp creates PCR duplicates-good for genome coverage; bad for quantification of molecular genomics experiments

Videos of HTS technologies

Roche 454: https://www.youtube.com/watch?v=rsJoG-AulNE

Ion Torrent: https://www.youtube.com/watch?v=zBPKj0mMcDg

Pac bio: https://www.youtube.com/watch?v=v8p4ph2MAvI

Illumina: https://www.youtube.com/watch?v=HMyCqWhwB8E

ABI solid: https://www.youtube.com/watch?v=nlvyF8bFDwM

Nanopore: https://www.youtube.com/watch?v=3UHw22hBpAk

Challenges that arise when working with big datasets

- Computational resources
- Data storage
- Processing power
- RAM
- CPUs
- Computational competency
- Adept in a command line environment
- Knowledge about available utilities
- Programming languages
- Pipeline development

A need for versatile scientists

Scientists need to be able to move between the bench and bioinformatics

Terminology

- Script
- Executable document or program listing computer interpretable commands to be executed in sequence.
- Pipeline
- Often a series of independent scripts
- Output from one script becomes input for next until desired result is achieved
- Once defined requires limited user effort
- Most processes that are routine enough to be automated in a pipeline are limited in the biological insights they can provide. Exploratory analyses are not usually pipelined.
- Workflow
- A series of steps to be followed in sequence with varying levels of effort
- May involve one or more pipelines
- Can encompass entire project starting from experiments at the bench and ending with detailed analyses

General analysis pipeline for genomics

Workflow can encompass projects and analysis pipelines

Web-based solutions for building pipelines

Galaxy

Web-based solutions for building pipelines

ME RUNS Projects analyses biosamples apps demodata

U709SKM2612GuertinProS15p

$$
\begin{aligned}
& \text { Flowcell } \\
& \text { H7JGWBGXC }
\end{aligned}
$$

summary samples
Flowcell
HJJGWBGXC
Extracted
90
Called
90
Scored
90

Web-based solutions for building pipelines

What is GenomeSpace? Tools Recipes Documentation Developers Support About

GENOMESPACE

Frictionless connection of bioinformatics tools

STATUS @ 11.18.19 06:02PM \square.

With the discontinuation of NHGRI funding for GenomeSpace we have shut down the servers.

GenomeSpace Recipes can be found at http://recipes.genomespace.org/ however data transfer through GenomeSpace will not be available.
More details can be found at http://www.genomespace.org/news/

Citing GenomeSpace

To cite your use of GenomeSpace, please reference Qu K, Garamszegi S, Wu F, et al. Nature Methods. 2016 Jan 18. doi: 10.1038/nmeth. 3732.

F1000 Check out our F1000 GenomeSpace Channel for published, community-contributed
\square recipes.

WHAT'S NEW

News Highlights

GenomeSpace Blog
The GenomeSpace project is ending
The GenomeSpace project servers are shutting down on November 15, 2019 due to expiration of its NHGRI funding. We would like to thank all GenomeSpace users for their support and for all the important science they have done on the platform over the last nine years. More >>

See All News Highlights

Calendar of Upcoming

 Events
(3) 1

Tweets by @genomespace

GenomeSpace Team

8- $\begin{gathered}\text { GenomeSpace T } \\ \text { Qgenomespace }\end{gathered}$
The GenomeSpace project ends *tomorrow* November 15, 2019 due to expiration of its NHGRI funding. Please save any data from your GenomeSpace account by transferring it to your own storage before that date. More details at genomespace.org/news/the-genom...

Thank you!
$0 \quad[$ Nov 14, 2019

Nein GenomeSpace Team

 @genomespaceThe GenomeSpace project ends on November 15, 2019 due to expiration of its NHGRI funding. Please save any data from your GenomeSpace account by transferring it to your own storage before that date. More details at
genomespace.org/news/the-genom
$O \quad[$
Sep 23, 2019

MEDS 5420 is a GUI-free zone

Why go GUl-free?

- Less use of system resources
- Generally better for large data
- Remote access to servers
- Easier creation of pipelines and automation
- Flexibility with diverse software
- Customization of parameters and pipelines

MEDS 5420: what will you gain?

- Learn how to access and navigate your computer via the command line for simple and moderately complex tasks.
- Learn programming strategies useful for processing, parsing, and analysis of data.
- Basic script construction and execution.
- Ability to string together commands (and / or scripts) and bioinformatics tools into processing pipelines and analysis scripts.
- Visualize data - figure making in R.
- Google strategies and key words
- How to articulate questions and prompts for GPT3
- Confidence to analyze genomic data and tackle more complex analyses

Course goals: Programming languages

Command line

R

January 18	Overview of Molecular Genomics and High Throughput Sequencing Technology	April 3	Writing functions in R
23	Introduction to the Command Line: navigating in the Terminal and basic utilities	5	Overview of RNA-seq lecture
	Introduction to the Command Line: parsing text files and piping (Homework 1	10	RNA-seq Analysis: alignment (Homework 4 assigned)
25	assigned)	12	RNA-seq Analysis: differential expression
30	Introduction to the Command Line: constructing scripts and running loops	17	RNA-seq Analysis: gene set enrichment analysis
February 1	Introduction to the Command Line: installing programs and editing the \$PATH	19	RNA-seq Analysis: continued (Homework 4 due)
6	Introduction to the Command Line: remote access and remote transfers	24	RNA-seq Analysis: continued
8	Introduction to the Command Line: job submissions	26	RNA-seq Analysis: continued
13	Quality Control and preprocessing of HTS data (Homework 2 assigned)		
15	Aligning HTS data: aligning ChIP-seq data		
20	ChIP-seq lecture		
22	Processing of ChIP-seq data (Homework 2 due)		
27	UCSC Genome Browser (Homework 3 assigned)		
March 1	ChIP-seq Analysis: calling peaks		
6	ChIP-seq Analysis: gene proximity		
8	ChIP-seq Analysis: motif analysis (Homework 3 due)		
20	ChIP-seq Analysis: motif analysis continued		
22	ChIP-seq Analysis: catching up		
27	Introduction to R		
29	Plotting in R continued		

Course goals: Molecular Genomics assays and analysis

RNA-seq

January 18	Overview of Molecular Genomics and High Throughput Sequencing Technology	April 3	Writing functions in R
23	Introduction to the Command Line: navigating in the Terminal and basic utilities		Overview of RNA-seq lecture
	Introduction to the Command Line: parsing text files and piping (Homework 1	10	RNA-seq Analysis: alignment (Homework 4 assigned)
25	assigned)	12	RNA-seq Analysis: differential expression
30	Introduction to the Command Line: constructing scripts and running loops	17	RNA-seq Analysis: gene set enrichment analysis
February 1	Introduction to the Command Line: installing programs and editing the \$PATH	19	RNA-seq Analysis: continued (Homework 4 due)
6	Introduction to the Command Line: remote access and remote transfers	24	RNA-seq Analysis: continued
8	Introduction to the Command Line: job submissions	26	RNA-seq Analysis: continued
13	Quality Control and preprocessing of HTS data (Homework 2 assigned)		
15	Aligning HTS data: aligning ChIP-seq data		
20	ChIP-seq lecture		
22	Processing of ChIP-seq data (Homework 2 due)		
27	UCSC Genome Browser (Homework 3 assigned)		
March 1	ChIP-seq Analysis: calling peaks		
6	ChIP-seq Analysis: gene proximity		
8	ChIP-seq Analysis: motif analysis (Homework 3 due)		
20	ChIP-seq Analysis: motif analysis continued		
22	ChIP-seq Analysis: catching up		
27	Introduction to R		
29	Plotting in R continued		

Course goals: Creating processing and analysis pipelines

January 18	Overview of Molecular Genomics and High Throughput Sequencing Technology	April 3	Writing functions in R
23	Introduction to the Command Line: navigating in the Terminal and basic utilities	5	Overview of RNA-seq lecture
	Introduction to the Command Line: parsing text files and piping (Homework 1	10	RNA-seq Analysis: alignment (Homework 4 assigned)
25	assigned)	12	RNA-seq Analysis: differential expression
30	Introduction to the Command Line: constructing scripts and running loops	17	RNA-seq Analysis: gene set enrichment analysis
February 1	Introduction to the Command Line: installing programs and editing the \$PATH	19	RNA-seq Analysis: continued (Homework 4 due)
6	Introduction to the Command Line: remote access and remote transfers	24	RNA-seq Analysis: continued
8	Introduction to the Command Line: job submissions	26	RNA-seq Analysis: continued
13	Quality Control and preprocessing of HTS data (Homework 2 assigned)	Ane	vsis and interoretation
15	Aligning HTS data: aligning ChIP-seq data		
20	ChIP-seq lecture		
22	Processing of ChIP-seq data (Homework 2 due)		
27	UCSC Genome Browser (Homework 3 assigned)		
March 1	ChIP-seq Analysis: calling peaks		
6	ChIP-seq Analysis: gene proximity		
8	ChIP-seq Analysis: motif analysis (Homework 3 due)		
20	ChIP-seq Analysis: motif analysis continued		
22	ChIP-seq Analysis: catching up		
27	Introduction to R		
29	Plotting in R continued		

Course goals: important dates

January 18	Overview of Molecular Genomics and High Throughput Sequencing Technology	April 3	Writing functions in R
23	Introduction to the Command Line: navigating in the Terminal and basic utilities		Overview of RNA-seq lecture
	Introduction to the Command Line: parsing text files and piping (Homework 1	10	RNA-seq Analysis: alignment (Homework 4 assigned)
	assigned)	12	RNA-seq Analysis: differential expression
30	Introduction to the Command Line: constructing scripts and running loops	17	RNA-seq Analysis: gene set enrichment analysis
February 1	Introduction to the Command Line: installing programs and editing the \$PATH	19	RNA-seq Analysis: continued (Homework 4 due)
6	Introduction to the Command Line: remote access and remote transfers	24	RNA-seq Analysis: continued
8	Introduction to the Command Line: job submissions	26	RNA-seq Analysis: continued
13	Quality Control and preprocessing of HTS data (Homework 2 assigned)		
15	Aligning HTS data: aligning ChIP-seq data		
20	ChIP-seq lecture		
22	Processing of ChIP-seq data (Homework 2 due)		
27	UCSC Genome Browser (Homework 3 assigned)		
March 1	ChIP-seq Analysis: calling peaks		
6	ChIP-seq Analysis: gene proximity		
8	ChIP-seq Analysis: motif analysis (Homework 3 due)		
20	ChIP-seq Analysis: motif analysis continued		
22	ChIP-seq Analysis: catching up		
27	Introduction to R		
29	Plotting in R continued		

Up to the midterm

- Command line usage
- Basic shell scripting
- Server access, usage, etiquette-Xanadu
- QC and preprocessing of Illumina data (ChIP-seq)
- Mapping (alignment to a genome)
- Additional QC and converting files
- Genome browsers
-ChIP-seq analyses:
- Peak calling
- Quantification of reads in genomic intervals / windows
- Sequence motif discovery
- Transcription factor database queries

midterm to final

- R language syntax, data types, and resources
- Plotting data (base R and lattice)
- RNA-seq
- Experimental design
- Preprocessing, mapping
- Paired-end vs. single-end processing and visualization in browsers
- Differential gene expression analysis (DESeq2)
- Gene set enrichment analysis

Syllabus: contact and references

MEDS 5420: Molecular Genomic Practicum
Mon, Wed. 1:15-3:15pm
400 Farmington Ave.
Room: R 1401

Instructor: Michael Guertin; guertin@uchc.edu
Office hours: by appointment
Text references:
Practical Computing for Biologists. Steven H. D. Haddock \& Casey Dunn (2018).
Getting started with R: an Introduction for Biologists. Andrew P. Beckerman \& Owen L. Petchey (2012)
R in Action: Data Analysis and Graphics with R. Robert I. Kabacoff (2011).
R Graphics 3rd Edition. Paul Murrell (2018) -https://www.stat.auckland.ac.nz/~paul/RG3e/

Although not necessary for this class, these books can be helpful. Ask your PI to purchase these books.

Syllabus: assignments and grading

Homework: Homework assignments will be announced in class and are due the following week. All assignments will be posted on GitHub and announced in class. Homework will be submitted via email to guertin@uchc.edu. Assignments should be named with the NetID and assignment number (e.g. xyx15002_HW1). Assignments are due by 5pm on the scheduled due date. Late assignments will lose 5\% of total points per day, including weekends.

Course Components	Weight
In class exercises	20%
Homework	30%
Midterm project	25%
Final project	25%

Grading Scale for MED 5420:

Grade	Letter Grade	GPA
$180-200$	A	4.0
$155-179$	A-	3.7
$130-154$	B+	3.3
$120-129$	B	3.0
$110-119$	B-	2.7
$105-109$	C+	2.3
$100-104$	C	2.0
$95-99$	C-	1.7
$92-94$	D+	1.3
$90-91$	D	1.0
$88-89$	D-	0.7
<88	F	0.0

Server access at UConn Health

We have access to a special queue on the Xanadu server for this course. I will distribute usernames and passwords during the second week of classes. I recommend using this user account even if you have your own already. This will avoid confusion with directory tree structure and problems with access when the server gets busy. You will need to transfer your data to your own account before the end of the semester. To request a personal account fill out the form here: https://bioinformatics.uconn.edu/contact-us/

Useful links from UConn Computational Biology Core

Understanding the UConn Xanadu cluster:
https://bioinformatics.uconn.edu/resources-and-events/tutorials-2/xanadu/
Unix basics:
http://bioinformatics.uconn.edu/unix-basics
Other CBC tutorials:
http://bioinformatics.uconn.edu/resources-and-events/tutorials/

First task: identify / install shell terminal

1. If you're laptop is >3 years old check with me about what type and OS.
2. Mac users will use built in Unix shell called ‘Terminal’ located in: Applications > Utilities > Terminal.app
3. *PC user resources (posted in syllabus):

Ubuntu (Linux) is available at Microsoft Store, instruction here:
https://tutorials.ubuntu.com/tutorial/tutorial-ubuntu-on-windows\#0
Shell terminal is also now available for Windows 10:
https://www.laptopmag.com/articles/use-bash-shell-windows-10
PuTTY, a SSH tool for connecting to server:
https://www.putty.org/
https://mediatemple.net/community/products/dv/204404604/using-ssh-in-putty-
WinSCP, a tool for file transfer between server and user's local machine:
https://winscp.net/eng/download.php
Another option for PC users (<Windows 10):
Partition your hard drive and install linux on your computer:
Linux download: http://www.ubuntu.com/download/desktop
Instructions for partitioning:
https://help.ubuntu.com/community/HowtoPartition
*I have never owned a PC and haven't used a PC in 15+ years. However, I am confident that we will figure it
all out! Any PC experts with command line or remote ssh experience please help out

Let's get started!

