Transcription Factors

ChlP-seq measures TF binding to DNA.

ChlP-seq also measures histone modification, cofactor, and RNA
Polymerase genomic locations—however, their occupancy are a
conseqguence of TF binding.

Mike Guertin



Broad lecture goals:

Convince you of the importance of transcription factors in providing
specificity in chromatin biology.

Introduce classic experiments that defined principles of TF biology
and provide references so one can follow up. Note that most
molecular biology was interpreted through looking at bands on
gels. As a graduate student, you should aim to be able to take a
well-written figure legend and figure and interpret the results.

lllustrate the point that biology Is continuous, not discrete; relative
guantification and controls are important.

Emphasize the role of question-driven exploratory experiments
(screens, molecular genomics, unbiased proximity label transfers,
solving structures, etcetera) in defining principles of transcription
factor biology.



Transcription dysregulation alters developmental patterning

pseudocolored flies: Justin Crocker, Ed Lewis, Nicolas
Gompel, and Welcome Bender



Transcription dysregulation alters developmental patterning

pseudocolored flies: Justin Crocker, Ed Lewis, Nicolas
Gompel, and Welcome Bender

pseudocolored SEM heads: Jirgen Berger



Classic genetics (perturb, observe, map) found that
Transcription Factors control developmental patterning

enzymes
| __cell adhesion

cell signal and
receptors . g factors

Figure 3. Cellular Function of Heidelberg Mutations. Based on the sequence of 75 cloned genes, most of the loci

identified in Heidelberg encode transcription factors, or cell signals and receptors.

Eric Weischaus, Nobel Lecture 1995



Transcription control is key in development and
homeostasis

HUMAN DEVELOPMENT CONTINUUM
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‘. Teen Adult

The life cycle of Drosophila melanogaster

Embryonic cells progress from totipotent to a spectrum of
more specialized states.

female male

Much of this developmental regulation starts at transcription.

Cells need to respond to changing nutrients and
environments.
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2012 Nobel in Physiology or Medicine:
“for the discovery that mature cells can be reprogrammed to become
pluripotent”

Shinya Yamanaka

Shinya Yamanaka studied genes that are important for stem cell function. When he transferred four such
genes (1) into cells taken from the skin (2), they were reprogrammed into pluripotent stem cells (3) that could
develop into all cell types of an adult mouse. He named these cells induced pluripotent stem (iPS) cells.



Activating transcription factors
changes cell identity

Oct4
Sox2

Kif4

Fibroblast iPSC

Takahashi & Yamanaka, Cell 2006



RNA Pol Il recruitment

RNA Pol Il initiation

productive
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RNA Pol Il pausing
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Transcription Regulation by Transcription Factors
(TFs) is determined by DNA sequence

Regulatory
Factors

Upstream Elements Core Promoter Elements
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Linker Scanning Mutations of the thymidine
kinase gene of HSV
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Clusters of point mutants are generated at the point of joining 5" and 3" deletions,
where linker sequence substitutes for tk sequence.

Mcknight and Kingsbury, Science 1982
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Assay expression of tk promoter mutants

Plasmid DNAS

Inject mutant DNA into

frog oocyte nuclei, include pseudo WT

standard as internal control /\ deletion between TSS and primer
sequence. RNA shorter and

distinguishable on gel.

|Isolate RNA

5 B—

Primer Extension Assay

Gel Electrophoresis
sk |tk promoter mutant

WT tk promoter; deletion of gene body




Expression data from Linker Scanning Mutants
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seqguence are critical for basal
expression.



Three promoter regions are critical for basal
expression

105 to -86 61t0-47 -32t0-16 tk gene

/7~ \ /N /7 \

TATA element located
approximately 30bp
upstream of the TSS



Three promoter regions are critical for basal
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Evolutionary conservation and comparative genomics
can identity crucial elements

D. melanogas
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Significant changes in nascent transcription upon
estrogen treatment in breast cancer cells

Collect the sequences of multiple (co-regulated) promoters within a species, search for common sequence motifs

Sustained Changes at both 10min and 40min

All red genes that are

activated (above zero on y-

axis), look at promoters for
% . over-represented motifs.

S
I

log, Difference in GRO-seq Signal

Untreated logio Raw Signal

de novo motit analysis using
MEME (or the alike) identifies
the Estrogen Response
Element, the known target of
the Estrogen Receptor.

Note that not all regulatory elements
bound by TFs are within promoters.



|dentify All Active Regulatory Elements in a Cell Type:
Enzyme Hypersensitivity (DNase-seq & ATAC-seq)

* A general measure of chromatin structure.

* Factor/species-general

* Changes in enzyme hypersensitivity landscape after drug treatment
or throughout development can be used to identify novel regulatory
elements and factors

* Generally unbiased, but challenging to deconvolve

* TFs controlling chromatin landscape
can be inferred from the data



Enzyme Hypersensitivity
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DNase-seq Data
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DNase/ATAC identifies a repertoire of TF motifs

chr21: | 43,785,000 43,790,000| 43,795,000| 43,800,000| 43,805,000| 43,810,000| 43,815,000| 43,820,000]
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Llelille.



DNase/ATAC identifies a repertoire of TF motifs

chr21: | 43,785,000 43,790,000| 43,795,000| 43,800,000| 43,805,000| 43,810,000| 43,815,000| 43,820,000]
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MCF7 DNase
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|dentify sequence elements at hypersensitive site using iterative de novo motif analysis



Experimental Design

Glucocorticoid receptor agonist
cAMP agonist
Insulin receptor agonist

6 days

3T3-L1 preadipocyte fibroblast Mature adipocycte
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0 20m 40m60m 2hr 3hr 4hr 6day
Time points for ATAC-seq and PRO-seq




ATAC-seq peaks have distinct accessibility kinetics
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Normalized ATAC signal
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de novo motif analysis identifies enriched sequence elements
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|[dentifying Transcription Factors that bind to the
cornucopia of DNA elements

Specific proteins recognize and
bind to these sequences.

How can we identify them?

Knowing specific sequences helps create both an assay and tool for purifying.



Electrophoretic Mobility Shift Assay (EMSA) detect
DNA binding tactors

nuclear extract labeled DNA

.A. "

\ incubate /

* R Aranc vt S

nuclear extract

Native Gel Electrophoresis
(band shift)




Purification of sequence-specific DNA-binding proteins

Nuclear Extract

1) SDS PAGE
DNA affinity 2) Mass Spec.
chromatography
C el 3) Confirm
C C Interaction
TLEIE CAZLTY by EMSA

Order oligos with modest variants of your consensus sequence (include random
flanking DNA). Biotinylate the ends of the duplexed DNA, bind to streptavidin beads/
column, elute, compare eluate to nuclear extract by PAGE, and mass spec.



Summary: Part |

Transcription and its regulation is specified by
short DNA sequence elements.

These elements interact with particular
transcription factors.

See Lambert et. al., The Human Transcription
Factors, Cell 2018 for a review of TF/DNA binding



“Next thing is how a cell’s picking which GATs
(stretches of nucleotides) get chosen, like Yogi
in a picnic basket. Proteins and DNA” Some
interesting chemistry. Cuz they getting jiggy
with some different affinities.”

—Tom McFadden

https://www.youtube.com/watch?
v=9k oKK4Teco&list=RD9k_oKK4Teco



https://www.youtube.com/watch?v=9k_oKK4Teco&list=RD9k_oKK4Teco
https://www.youtube.com/watch?v=9k_oKK4Teco&list=RD9k_oKK4Teco

Minor groove

Major groove

How do proteins interact with specific DNA sequences?

© Hydrogen
© Oxygen

@ Nitrogen

© Carbon

@ Phosphorus

Pyrimidines Purines



Hydrogen bond is the electrostatic attraction
between polar groups

Thymine Adenine
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H-bond: a Hydrogen atom bound to a highly electronegative atom such as Nitrogen or
Oxygen experiences attraction to another nearby highly electronegative atom.



The atoms shown below are available to mediate
protein/DNA interactions via H-bonds
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The atoms shown below are available to mediate
protein/DNA interactions via H-bonds




Hydrogen Bond Donors and Acceptors are
exposed in the Major and Minor Grooves
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the Major and Minor D
Grooves
A A

D :
major



Thymine’s methyl group provides an additional
source of recognition/specificity
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An example of an Amino acid/DNA base interaction

The interaction between arginine with its two
hydrogen bond donors and a guanine base
with its two acceptors in the major groove is

- an important component of many protein/DNA
interactions.




Minor groove

Major groove

How do proteins interact with specific DNA sequences?

© Hydrogen
© Oxygen

@ Nitrogen

© Carbon

@ Phosphorus

Pyrimidines Purines
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Base Composition and Shape Contribute to TF-DNA Specificity

"~ T

"/(A) Base readout: \\ '/("B) Shape readout: |
Major Minor
groove groove Narrow minor
groove
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Base readouts are specific
for bp in major groove but
degenerate for minor groove.

Shape dominates for a minor
groove-binding high motility
group (HMG) box protein

Base readout Is a major
contribution in DNA
recognition by the bHLH
protein Pho4

Both readout modes are
~equally present in the DNA
binding of a Hox—Exd
heterodimer

Slattery et al. (2014) Trends Biochem Sci. 39: 381-99



What are the features of protein
domains that bind DNA"



Zinc-containing DNA binding domains

(Zinc is coordinated with a combination of Cysteine and Histidine residues)

* CysoHiso Class:
* Beta-Beta-Alpha fold

o Cys-Xo.4-Cys-X1o-His-X3z5-His




Three zinc fingers of Zit268 follow the major groove
with each fingers occupying ~3 bp.

é.omﬁ\on.omo )




Song Tan lab: Zif268

http://www.personal.psu.edu/sxt30/movies/zif268dna_h264.mov


http://www.personal.psu.edu/sxt30/movies/zif268dna_h264.mov

Comparing Zn Fingers

* Variations in a simple motif can
provide a dramatic range of DNA
sequence recognition.

* /n Finger nucleases provide for
directed mutagenesis. Geurts et al.
Knockout rats via embryo
microinjection of zinc-tfinger
nucleases. Science. 2009 325:;
433.

 Have you ever heard of TALE &
TALENS? They were the rage prior
to CRISPR.

GLI F5

GLI F4



Zinc-containing DNA binding domains

(Zinc is coordinated with a combination of four Cysteine residues)

e Treble-clef Class:

e [3-hairpin at the N-terminus
and an a-helix at the C-
terminus that each
contribute two ligands for
zinc binding (a loop and a
second [3-hairpin of varying
length and conformation
can be present between
the N-terminal 3-hairpin
and the C-terminal a-helix)




—strogen

Receptor/

DNA Complex

(Zinc is coordinated with a combination of four Cysteine residues)

Patikoglou & Burley (1997)°Ann Rev BBS 26:289



Engrailed Homeodomain/ DNA Complex

Both major and minor
groove interactions by
helix 3 and the N-
terminal arm

'\ respectively




Song Tan lab: Engrailed

http://www.personal.psu.edu/sxt30/movies/engrdna_h264.mov



http://www.personal.psu.edu/sxt30/movies/engrdna_h264.mov

Engrailed Homeodomain (Hox genes also have
homeodomains)




Leucine Zippers: dimerization of TFs

AT




Leucine Zippers: dimerization of TFs

DNA

major 2Io00vVe. —» >

[_eucine
zipper



Leucine Zippers: dimerization of TFs

Azuma et. al., Chem Commun 2014 Jun 18;50(48):6364-7



Song Tan Lab: bZIP

http://www.personal.psu.edu/sxt30/gallery_protdna.html



http://www.personal.psu.edu/sxt30/gallery_protdna.html

Have you heard of the transcription factor AP1?
Interaction Matrix for 49 human bZIP Peptides
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~14% of possible interactions
detected.

Most between family members, but
136 between families.

Newman & Keating (2003) Science 300:2097



Leucine Zippers Provide Specitic Dimerization Interactions
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Chromatin affects TF binding in vivo

-Besides sequence, what influences TF binding!?



HSF binds many sites after HS

Westwood, Clos & Wu Nature 1991



Chromatin Immunoprecipitation

(ChIP)
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Chromatin Immunoprecipitation
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Chromatin Immunoprecipitation
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Chromatin Immunoprecipitation

‘ (ChIP)
Crosslink DNA and l ] Q g 2 Q

Proteins

Shear DNA ‘ L—L n — a
Immunoprecipitate ﬁ a

Purify DNA —

Gilmour and Lis, Molecular and Cell Biology 1985



Chromatin Immunoprecipitation

‘(ChIP-seq)
Crosslink DNA and l ] Q g 2 Q

Proteins

Shear DNA ‘ L—L n — a
Immunoprecipitate ﬁ a

Purify DNA

Ligate adapters ——

Mikkelsen et. al., Nature 2007; Johnson et al., Science 2007



Chromatin Immunoprecipitation

‘(ChIP-seq)
Crosslink DNA and l ] Q g 2 Q

Proteins

Shear DNA ‘ L—L n — a
Immunoprecipitate ﬁ a

Purify DNA

Ligate adapters ——
= <=

Mikkelsen et. al., Nature 2007; Johnson et al., Science 2007

Sequence DNA ends



Chromatin Immunoprecipitation
(ChlIP-seq)

Peak calling: Zhang, et. al., Genome Biology 2008 (and many others)



HSF targets DNA inducibly

c?rs%L: 9370000 | 9375000 |

NHS
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Hsp22 CG4461 Hsp26 Hsp23 Hsp27




HSF targets a consensus motif

D. melanogaster

bits

CTA Aa

N A
0_: e —— — —



HSF binds a fraction of motifs in vivo

® (Queried the Drosophila genome using this
HSE matrix:

D. melanogaster

CTA AA

e Found 708 post-HS HSF-free motifs that conform stringently to this
consensus HSE, compared to 442 HSF-bound motifs.

e Note that these are computational predictions of potential HSF
binding sites



HSF targets motifs within active chromatin

Free Motifs

Bound Motifs
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Correlative genomics allows one to develop a hypothesis;
we hypothesize that active chromatin permits TF binding

chr3L: 13990000 14000000 14010000 14020000 14030000 14040000
15 -

20'HS HSF ChIP-seq
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HSF-bound Binding Sites
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Changing the chromatin at an HSE

(now this is done trivially with CRISPR-dCas9 coupled to
chromatin modifiers)

| 000
&

Ecdysone
Receptor

HSF-free motif



Changing the chromatin at an HSE
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% Input

Converting and HSF-free to an HSF-
bound motif
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Guertin and Lis PLoS Genetics, 2010



Biology is continuous, not discrete

* So far | have considered HSF-bound and
HSF-free as two separate categories.
* In reality, some low intensity binding sites look more

like unbound regions and the intensity of binding is
meaningful.

* Can we predict inducible TF binding
intensity!



Predicting TF binding intensities

(/)]

g o

N <

(@]

c

-_E (]

€ O

m O -

- O _| .; TT

‘I; N .: = U= = —_— l —_

.g I 5 6 Posttion ; 1I0 1I1 I 15
Weight marices areot ideal for predicting potential binding affinity

>

% © | | | | |

o 0 100 200 300 400 500

Rank



in vitro nucleic acid/protein binding
(PB-seq)

Isolate genomic DNA



in vitro nucleic acid/protein binding
(PB-seq)

Isolate genomic DNA

Shear DNA



in vitro nucleic acid/protein binding
(PB-seq)

Isolate genomic DNA
Shear DNA
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in vitro nucleic acid/protein binding
(PB-seq)

Isolate genomic DNA
Shear DNA

Incubate with
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in vitro nucleic acid/protein binding
(PB-seq)

Isolate genomic DNA
Shear DNA

Incubate with
Recombinant HSF  ———— —.— —.—
Immunoprecipitate
HSF/DNA complexes —.— —.—

Purify/quantify DNA —



in vitro Binding Assay (PB-seq) reveals all potential
binding sites and relative affinities

chr3L:  9370000] 9380000| 9390000 | 9400000
100-

in vitro ﬁ l
150-
in vivo | " | ‘
M mem

Hsp22 Hsp26 Hsp23 Hsp27 CG4080 eIF 4e Cpr67B

CG4461

To transform these relative values into Kd measurements the absolute binding affinities for
two genomic HSEs must be measured.



HSF binds to HSEs with picomolar to
nanomolar affinity in vitro
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Prediction of Binding Profiles using available PB-seq Data and
Genomic Chromatin Data from modENCODE

DNase | H3K9me?2
GAF H3K36me1
H4K16ac H3K36me3
H4 TetraAc CP190
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Chro(Chriz) Ez

BEAF H4K8ac
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H3K9ac H3K4me1
H4K5ac H3K9me3
HP1 CTCF
H3K27me3 bulkH3
H2Bub bulkH2A
H3K79me?2 Pc

H2Av H3K18ac



Regression models predict in vivo (ChIP) binding signal
using the in vitro (PB-seq) data and NHS chromatin landscape

chraL. 6948000 6950000| 6952000

A A A

180 -

1 “———J‘_A*_LM

180 -
DNase |

. A A A

180 -

in vitro

Experimental

Histone Mods.

0_ A _ . L

180 -

non-Histone
Factors
0O_ A& _ . _ o _ _ A

CG10077

in vivo Prediction Tracks




Histone Acetylation is the most influential
modification for predicting HSF binding intensity

Histone Mods.
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Relative Importance

GAF is the most influential non-histone
covariate in the predictive model

non-Histone Factors




GAF depletion compromises HSF binding intensity

GAF KD ChIP chr2R: 1429426
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How do accessibility and active marks originate!
working model:

Accessible ——>

Not accessible =—>




DNA sequence directs accessibility

DNA Sequence (poly-AT tracts)
keep yeast promoters
free of nucleosomes

(Struhl & Rando labs)

Accessible ——>

Not accessible =—>




DNA sequence directs accessibility

CpG islands favor nucleosome
formation in vitro,

Accessible ——> but are depleted in vivo.

HI preferentially binds
Al-rich linker DNA.

(Reviewed in Zlatanova and Yaneva,
DNA cell Biol. 1991)

Not accessible =—>

Hypothesis: CpG islands are inherently refractory to higher order compaction
by HI, which maintains the chromatin is a transiently accessible state.



Factors target linker DNA between nucleosomes

TFs target uncompacted
l chromatin and CpG islands
are highly occupied in vivo.

The Setl H3K4 methylation compléx and a -H'3K36 demethylase has been
shown to interact with unmethylated CpG-rich DNA in vitro.

(Ooi et al. Nature 2007, Zhou et al. Mol Cell Biol 2012)

Mammalian sequence-specific TFs, as a class, have a GC-bias in their cognate
binding sites (Deaton et al. Genes Dev 2011)



Binding expands accessible regions

TF binding increases
and expands the
boundaries of accessibility

and active marks.




Binding expands accessible regions

Then the pink TF
can bind and active
transcription,
which ultimately
controls cell fate.




Is there a paradigm shift in biology, away from overly
hypothesis-driven research?

* Starting today, here is how | would approach my
PhD:

* ldentify a relevant question.

* Design experiments that are as unbiased (and controlled!) as
possible to address this question.

* Analyze data and look for correlations.
* Formulate hypotheses from the correlations.

* Test the hypotheses.

*  With an open mind and competently designed
experiments/analyses, one can develop hypotheses
that were inconceivable at the onset.



Summary: Part Il

Features of double-stranded DNA sequence can provide recognition
features for proteins.

DNA-binding transcription factors (TFs) represent a fairly large
fraction of the proteome.

TFs have domains that bind specific DNA elements and fall into
distinct classes.

These domains employ a variety of strategies to build a molecular
protein complement to the DNA element.

The repertoire of target DNA sequences that can be specifically
recognize by these proteins is further enriched by heterodimerization
and cooperative interactions.

Chromatin state dictates TF binding, which can in turn influence
chromatin structure



My favorite Transcription Factor:
Drosophila HSF

DNA binding Trimerization Activation




DNA binding and activation domains of
transcription factors are distinct and separable

GAL4 - a eukaryotic activator LexA - a bacterial repressor

DNA DNA
Binding Binding
Domain to Domain to

Lop Gall-lacZ
Cut & Splice & Join 000 >
to Expression Vector
Remove and
v Substitute the
UASG :
Vector Expression
PADH Units of B-Gal
(! ) Transform Yeast LexA  LexA- GAL4
containing a v
Gal1-lacZ
Reporter AUASG O O
PADH
5 lor <1 | 520

Brent and Ptashne, Cell, 1985



Transcription Activation Activity can
reside in one or more regions

DNA BD | ”

N GAL4
1 147 238 768 881
Construct Units of B-Gal
Generate deletions
in vitro GAL4 WT 1900
\/
GAL4 1-147 <1
Clone into Expression Vector
v GAL4 1-238 110
Transform gal4- strain 1-147/768-881 110
w/ GAL1-lacZ reporter
\ 4
1-238/768-881 1400

Ma and Ptashne, Cell, 1987



Transcription activation regions occur frequently
and are often acidic

Random
PapuGAL4 DBD E. Coli DNA

Library of plasmids
containing random bits

am E. Coli DNA

Gali1-lacZ

oogop o ———————*

\4

v

Transform gal4- strain
w/ a GAL1-lacZ
reporter

Units of B-Gal

<1

Random E. Coli DNA
encoded 12-81 amino
acids and their common
feature was net charge of
minus 1-10

Ma and Ptashne, Cell, 1987 (not the same paper as the previous slide)

Select Blue colonies: ~1%

10-80

Sequence



Negative charge correlates with transcriptional
activity of VP16
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Cress & Trezenberg, Science 1991



A single Phenylalanine is critical to VP16 function

A

ress & Trezenberg, Science 1991



The environment surrounding Phe**affect VP16 function

¢ §§6

1E-tk

Cress & Trezenberg, Science 1991



Measuring thousands of desighed GCN4 activation
domain mutants in parallel

A B ® Charge
ST .o ® Hydrophobicity
ol Disorder
Ji DBD ERD Activation Domain -BC— Single mutants
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O
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Staller, et. al., Cell Systems, 2018



Simulations reveal that highly active variants keep
aromatic residues exposed to solvent
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Accessibility of W/F/Y (A2?)

2000 - 50 Most active .
® 0
1500 - R
% ati
I SRR '..‘.‘EQ-
Jo ® 2ene ®e
1000 - o R 235 Vs
1 SPRPYZ s AL
o® o &’ }..
o::.o .: .‘0. o..‘ ; ‘.‘Q"i. 0. od
R RS L S
500— .. ' ." .1 4 9
2i%s 20 T “
2o g Y 3
‘:‘. ® ¢
O | | |
10 15 20

Radius of gyration (A)

Staller, et. al., Cell Systems, 2018



Aromatic residues control Gecn4 Activity

Activity

14 - =
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oYy 1Y 2Y 3Y

OE 1E 2E 3E 4E 5E 6E 7E 8E 9E 10E11E12E

Conclusions: acidic residues regions keep two hydrophobic motifs exposed to solvent to

mediate activity.

Staller, et. al., Cell Systems, 2018



Activation domains come in several flavors

SP1 - Q-rich domain (polar)
CTF - P-rich activation domain (hydrophobic)

NTF1 - [-rich activation domain (hydrophobic)



Summary: Part |l

DNA-binding transcription factors (TFs) often have
distinct and separable domains (DBD and activation)

Hydrophobic and Acidic residues are often critical for TF
activation function, perhaps acidic residues keep
hydrophobic solvent-exposed.

There are many types of activation domains



Part IV

Most TF binding events do not result in changes in gene
expression.

As a corollary, just because something exists does not
mean it is functional.

Too often people ask the question “what is the function
of X”, when there is no evidence that X is functional.

A contemporary example is IncRNAs.



How can we identify which cofactors interact
with your favorite activation domain?

e Conventional chromatography of Mediator: Naar,
et. al., Science, 1999; follow up work identified the
KIX domain of Med15: Yang, et. al., 20060.

 immobilized template and label transfer: Fishburn,
et. al., Molecular Cell 2005.

* Unbiased approach: BiolD or APEX tagging of TFs
—Roux, et. al., J Cell Biol. 2012; Lam, et. al.,

Nature Methods 2014 (there are newer versions of
each)



