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Transcriptome

Each cell within an organism has an identical 
genome (more or less); gene expression dictates 

cellular phenotypes. 



Gene Regulation:
From transcription to protein degradation
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DNA sequence influences nucleosome positions/dynamics and chromatin compaction 

DNA sequence directs Transcription Factor (TF) binding

sequence-specific TFs recruit chromatin modifying/remodeling factors

sequence-specific TFs recruit initiation factors and RNA Polymerase



RNA species

• rRNA: 80% 

• tRNA: 15% 

• mRNA: ~3% 

• miRNA: <1% 

• eRNA: <1% 

• lncRNA: <1% 

• *RNA: <1%

Fig 3. Djebale et al (2012) Nature 489:101


1–4 r.p.k.m. approximates to 1 copy per cell. 
One-quarter of expressed protein-coding genes and 80% of the detected 
lncRNAs are present in our samples in 1 or fewer copies per cell.



mRNA is generated from longer pre-mRNA



mRNA composition dictates the identity of a cell

• Although mRNA is ~3% of total RNA, it is the most 
biologically significant because it specifies the proteome 
and biochemical capacity of the cell.


• How do we measure the transcriptome? 


• What drives lineage-specific transcriptomes during 
development and throughout a cell’s life?



RNA-seq

• What RNA is found in the cell? 


• Species-general; good for studies of non-
model organisms


• Good for looking steady-state RNA levels 
and splicing variants


• Very few biases:  rRNA depletion; poly-A 
selection


• Easily interpreted

Nagalakshmi, et al. Science (2008)



RNA-seq

Mortazavi et al., Nature Methods 2008



RNA-seq

differential splicing

intron accumulation (inefficient splicing)
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RNA-seq
• There are many variants of RNA-seq. 

• I consider strand-specific, rRNA depleted, random 
hexameter priming RNA-seq as the gold standard for 
addressing many questions. 

• I am happy to discuss what RNA-seq protocol is right 
for you—it can depend on your biological question



RNA-seq  

• Why? 
• Considerations 

– Methods 
– Replicates 
– Mapping pipelines 
– Normalization 
– Differential Expression 

• Considerations 
• Software



Genomic measurements of RNA abundance

Signal is a ratio of conditions

Relative abundance

Analog signal

Microarray hybridization RNA sequencing

Independent sample quantification

Digital signal
Closer to Absolute abundance (with spike-ins)



Why RNA-seq? More benefits and 
opportunities

• All transcripts are sequenced, not just ones for which probes are designed (e.g. 
microarrays) 

• Can discover new exons, transcribed regions, genes or non-coding RNAs 

• No cross-hybridization 

• Digital readout (counting) instead of analog signal (ratios of hyb. signal) 

• Can compare expression between genes 

• Limited only by sequencing depth – detect low abundance transcripts 

• Genuine whole transcriptome sequencing: 

– the ability to look at alternative splicing 
– allele-specific expression 
– RNA editing
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Experimental and sequencing 
considerations

https://genome.ucsc.edu/ENCODE/experiment_guidelines.html

• Before library prep: 
– RNA population 
– Spike-in controls? 
– RNA quality 
– Type of kit or library prep method 
– Number of replicates 

• After library prep: 
– Sequencing depth 
– Processing pipelines 
– Normalization methods 
– Differential gene expression analysis



Considerations: RNA population

• Poly-A+ RNA  
– Good for detecting mRNA 

• Total RNA 
– Good for detecting non-coding RNA  
– Must remove rRNA (>80% of RNA in cell) 

• Targeted RNA capture: 
– Disease-associated panels of genes 
– Detecting isoforms 
– Detecting low-abundant RNAs



• Multi-group effort: External RNA Control Consortium (ERCC) 
– headed by National Institute of Standards and Technology (NIST) 

• ERCC spike-ins are 96 synthetic RNAs with varying length, GC 
content, and 20 order of magnitude in concentration. 

• Allow measurement of sensitivity, accuracy, and biases of RNA-seq 

• Allow absolute quantification of RNAs and normalization between 
samples. 

• Can make yourself, obtain clones from ERCC, or purchase from 
vendors.

Considerations: Spike-in controls

http://genome.cshlp.org/content/21/9/1543.full.pdf+html



Considerations: RNA QC before library prep

http://www.agilent.com/cs/library/applications/5989-1165EN.pdf



Considerations: RNA QC before library prep

http://www.agilent.com/cs/library/applications/5989-1165EN.pdf



Considerations for library prep: strand specificity



Considerations  for library prep: Single or paired-end



Strand specific methods and kits



Evaluating RNA-seq library preparation methods



Evaluating RNA-seq methods: Strand specificity



Evaluating RNA-seq methods: Evenness of 
Coverage



Strand specificity and Evenness of Coverage



Evaluating RNA-seq methods: coverage gaps



Evaluating RNA-seq methods: coverage gaps
Coverage gaps

Lower is better

Higher is better

Coverage at transcript ends



Molecular Biology for RNA-seq:  
this approach will probably work for you

rRNA (>75% cellular RNA)!rRNA
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First cycle: only one primer anneals.

PCR1
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Second cycle: generates a product representing a 
single strand of what will be the final amplicon.
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Considerations: sequencing depth



Considerations: biological and technical replicates

necessary



(a) Increase in biological replication significantly increases the number of DE genes 
identified. 

Yuwen Liu et al. Bioinformatics 2014;30:301-304

© The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, 
please e-mail: journals.permissions@oup.com

Power:  
Sensitivity of test  
to detect true effects  
(probability) 

Coeff. of Var (CV): 
(SD/mean)



(a–c) The CV of logCPM for high expression level genes (a), medium expression level genes 
(b) and low expression level genes (c) (see Section 2 for definition). 

Yuwen Liu et al. Bioinformatics 2014;30:301-304

© The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, 
please e-mail: journals.permissions@oup.com



Post-sequencing QC and analysis

• After library prep: 
– RNA-seq Quality control 
– Processing pipelines 
– Normalization methods 
– Differential gene expression analysis



RNASeQC - quality control pipeline

• Sample reports: calculates a number of metrics useful for 
assessing quality of libraries and depth of sequencing. 

• Comparison of metrics between samples.

http://bioinformatics.oxfordjournals.org/content/28/11/1530.long

• Total, unique and duplicate reads 

• Mapped reads and mapped unique reads 

• rRNA reads 

• Transcript-annotated reads: 

• Expressed transcripts: count of transcripts 
with reads ≥1. 

• Strand specificity



Variations of RNA-seq mapping strategies



Mapping issues/options
Issues  
• With RNA-seq we really want to align to the transcriptome. 
• Splice junction reads will not align to the genome. 
• The longer the reads, the more likely one will hit a junction. 
 

36



Mapping issues/options
Issues  
• With RNA-seq we really want to align to the transcriptome. 
• Splice junction reads will not align to the genome. 
• The longer the reads, the more likely one will hit a junction. 

Options  
• Don’t worry about it, align to the genome. 
• Build a junction library, and align to that.  
• Create your own transcriptome “de novo”. 
• Combination of first two or all three 
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Tuxedo tools software suite 



The TopHat pipeline for de novo splice junction 
discovery. 

Cole Trapnell et al. Bioinformatics 2009;25:1105-1111© 2009 The Author(s)



Mapping issues/options:  Alignment options 



Mapping issues/options:  Alignment options 

Star is much faster, but requires more resources (RAM)

HISAT2 was released after this benchmarking and it is my preferred RNA-seq mapping software



HISAT2: 

Hierarchical Indexing for Spliced Alignment of Transcripts

HISAT2 is faster HISAT2 uses less memory space



HISAT2: workflow with new tuxedo tools 



HISAT2: workflow with new tuxedo tools 
Map to genome

Construct transcriptome  
and assign reads to isoforms.

Bulk Differential gene  
expression analysis

HISAT

StringTie

Ballgown

Isoform level Diff. Gene. 
 Expr. analysis

EdgeR / DEseq



De novo transcript assembly with or without a 
genome

Haas and Zody, NBT, 2010



• Total count Normalization (FPKM, RPKM, TPM) 
– By total mapped reads 

• F= unique Fragments 
• R= Reads 
• T = Transcripts 

• Upper quartile normalization 
– Read count of genes in upper quartile 

• Housekeeping genes 

• Trimmed mean (TMM)  normalization 

Added level: 
• Spike-in controls

Normalization methods



Library characteristics, ERCC quantification, 
and coverage, transcript counting. 

Lichun Jiang et al. Genome Res. 2011;21:1543-1551

©2011 by Cold Spring Harbor Laboratory Press

Linear standards Allow calculating average transcripts /cell

ERCC = External RNA Control Consortium



Gene expression analysis workflows

http://www.labome.com/method/RNA-seq-Using-Next-Generation-Sequencing.html



Differential gene expression analysis: 3 popular methods



DE Analysis: Options and trade offs

Rapaport F et al. Genome Biology, 2013 14:R95



Read depth and DE expression calling
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Length bias in RNA-seq

For genes of the same expression level longer transcripts will have more reads 

• There is more information for longer transcripts than shorter ones. 
• Higher power to detect DE in longer transcripts.
• This length bias is not present in microarray gene expression data.

Equal number of transcripts, difference in transcript length ×6

Number of fragments ×6

More power to detect DE at a given 
threshold
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Proportion of DE genes v gene length, # reads

53

3 lanes treated vs 
4 untreated. 

LNCaP cells

Fisher exact 
test, FDR ≤ 10-4.

Analysis: Young et al, Gen. Biol. 2010. Data : Lovci et al, PNAS 2008 



Dealing with the length bias

• It is not easy to do anything about this bias without throwing away 
data.  

• It has the capacity to bias downstream gene set and Gene Ontology 
analyses.  

• Young et al, Gen. Biol. 2010  and others have shown using p-values 
weighted on curves similar to previous slides (based on gene lengths), 
can help to alleviate some of the bias. 

• The problem is still largely ignored by most of the standard DE 
expression software.  However, DESeq2 recently added including gene 
length as an optional parameter.
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Useful links for transcriptome and DE analysis
Video: 
WATCH THIS:  https://www.youtube.com/watch?v=5NiFibnbE8o#action=share 
Papers: 
TopHat/cufflinks: 
http://www.nature.com/nprot/journal/v7/n3/pdf/nprot.2012.016.pdf 
HISAT/StringTie/Ballgown – papers and tutorial 
http://www.nature.com/nmeth/journal/v12/n4/full/nmeth.3317.html 
http://www.nature.com/nbt/journal/v33/n3/full/nbt.3122.html 
http://www.nature.com/nbt/journal/v33/n3/pdf/nbt.3172.pdf 
http://www.nature.com/nprot/journal/v11/n9/pdf/nprot.2016.095.pdf 
edgeR:  
http://bioinformatics.oxfordjournals.org/content/26/1/139.full.pdf+html 
DEseq2: 
http://genomebiology.com/content/pdf/s13059-014-0550-8.pdf 
Tutorials: 
Tophat: 
http://www.nature.com/nprot/journal/v7/n3/pdf/nprot.2012.016.pdf 
EdgeR: 
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf 
http://cgrlucb.wikispaces.com/file/view/edgeR_Tutorial.pdf 
DEseq2: 
http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf 
http://dwheelerau.com/2014/02/17/how-to-use-deseq2-to-analyse-rnaseq-data/

https://www.youtube.com/watch?v=5NiFibnbE8o%23action=share
http://www.nature.com/nprot/journal/v7/n3/pdf/nprot.2012.016.pdf
http://www.nature.com/nprot/journal/v11/n9/pdf/nprot.2016.095.pdf
http://www.nature.com/nprot/journal/v11/n9/pdf/nprot.2016.095.pdf
http://www.nature.com/nbt/journal/v33/n3/pdf/nbt.3172.pdf
http://www.nature.com/nprot/journal/v11/n9/pdf/nprot.2016.095.pdf
http://bioinformatics.oxfordjournals.org/content/26/1/139.full.pdf+html
http://www.nature.com/nprot/journal/v7/n3/pdf/nprot.2012.016.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://cgrlucb.wikispaces.com/file/view/edgeR_Tutorial.pdf


After the next R lecture:

Exercises: 
Alignment, summarization and normalization of RNA-seq data


