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Transcriptome

Each cell within an organism has an identical
genome (more or less); gene expression dictates
cellular phenotypes.



Gene Regulation:
From transcription to protein degradation

DNA RNA Protein
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rRNA: 80%

tRNA: 15%

MRNA: ~3%

MIRNA: <1%

eRNA: <1%

INCRNA: <1%

*RNA: <1%
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1-4 r.p.k.m. approximates to 1 copy per cell.
One-quarter of expressed protein-coding genes and 80% of the detected
IncRNAs are present in our samples in 1 or fewer copies per cell.
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Fig 3. Djebale et al (2012) Nature 489:101



MRNA is generated from longer pre-mRNA

promoter

LH* DNA

introns - :
exons \ transcription primary transcript
(nucleus)
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MRNA composition dictates the identity of a cell

- Although mRNA is ~3% of total RNA, it is the most
biologically significant because it specifies the proteome
and biochemical capacity of the cell.

How do we measure the transcriptome?

- What drives lineage-specific transcriptomes during
development and throughout a cell’s life?



RNA-seq

e \What RNA is found in the cell?

Species-general; good for studies of non-
model organisms

Good for looking steady-state RNA levels
and splicing variants

Very few biases: rRNA depletion; poly-A
selection

Easily interpreted

Nagalakshmi, et al. Science (2008)



RNA-seq
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RNA-seq

condition |

differential splicing

|

condition 2

intron accumulation (inefficient splicing)




RNA-seq

* There are many variants of RNA-seq.

e | consider strand-specific, rRNA depleted, random

hexameter priming RNA-seq as the gold standard for
addressing many questions.

* | am happy to discuss what RNA-seq protocol is right
for you—it can depend on your biological question



RNA-seq

e« Why?
« Considerations
— Methods
— Replicates
— Mapping pipelines
— Normalization

— Differential Expression
e Considerations
o Software



Genomic measurements of RNA abundance

Microarray hybridization RNA sequencing
Control Cells  Test Cel l
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Analog signal

Signal is a ratio of conditions

Digital signal

Independent sample quantification

Relative abundance
Closer to Absolute abundance (with spike-ins)



Why RNA-seq? More benefits and
opportunities

All transcripts are sequenced, not just ones for which probes are designed (e.g.
microarrays)

Can discover new exons, transcribed regions, genes or non-coding RNAs
No cross-hybridization
Digital readout (counting) instead of analog signal (ratios of hyb. signal)
Can compare expression between genes
Limited only by sequencing depth — detect low abundance transcripts
Genuine whole transcriptome sequencing:

— the ability to look at alternative splicing

— allele-specific expression

— RNA editing



Experimental and sequencing
considerations

« Before library prep:
— RNA population
— Spike-in controls?
— RNA quality
— Type of kit or library prep method
— Number of replicates

« After library prep:
— Sequencing depth
— Processing pipelines
— Normalization methods
— Differential gene expression analysis

https://genome.ucsc.edu/ENCODE/experiment_guidelines.html



Considerations: RNA population

e Poly-A+ RNA
— Good for detecting mRNA

« Total RNA

— Good for detecting non-coding RNA
— Must remove rRNA (>80% of RNA in cell)

« Targeted RNA capture:
— Disease-associated panels of genes
— Detecting isoforms
— Detecting low-abundant RNAs



Considerations: Spike-in controls

Resource

Synthetic spike-in standards for RNA-seq experiments

Lichun Jiang,"> Felix Schlesinger,”>>” Carrie A. Davis,” Yu Zhang,'® Renhua Li,’
Marc Salit,” Thomas R. Gingeras,” and Brian Oliver’

Multi-group effort: External RNA Control Consortium (ERCC)
— headed by National Institute of Standards and Technology (NIST)

« ERCC spike-ins are 96 synthetic RNAs with varying length, GC
content, and 20 order of magnitude in concentration.

« Allow measurement of sensitivity, accuracy, and biases of RNA-seq

e Allow absolute quantification of RNAs and normalization between
samples.

e Can make yourself, obtain clones from ERCC, or purchase from
Vendors. http://genome.cshlp.org/content/21/9/1543 full.pdf+html




Considerations: RNA QC before library prep

e Total RNA Quality
— BioAnalyzer RIN (RNA Integrity Number)

e Absence of genomic DNA N
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http://www.agilent.com/cs/library/applications/5989-1165EN.pdf



Considerations: RNA QC before library prep

e Total RNA Quality
— BioAnalyzer RIN (RNA Integrity Number)
e Absence of genomic DNA
— gPCR assay
e mRNA Purity
— BioAnalyzer % rRNA < 5%
¢ mRNA Quantity

— Minimum of 10 nanograms

http://www.agilent.com/cs/library/applications/5989-1165EN.pdf



Considerations for library prep: strand specificity
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Annotation
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Reconstructed

Annotatlon . LT
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>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

» ldentify strand of origin for non-coding RNA
» ldentify antisense RNA

» Define ends of adjacent or overlapping transcripts
transcribed in opposite directions



Considerations for library prep: Single or paired-end

Single end read
or

Paired end reads
cDNA

Single End Paired End
Cost Lower Higher
Sequencing Run Time  Shorter Longer
Data per library Less More

Informativeness Generally Less Generally More



Strand specific methods and kits

mRNA
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Evaluating RNA-seq library preparation methods

Comprehensive comparative analysis of strand-specific
RNA sequencing methods

Joshua Z Levin®, Moran Yassour!~3¢, Xian Adiconis!, Chad Nusbaum!, Dawn Anne Thompsonl,

Nir Friedman®4, Andreas Gnirke! & Aviv Regev!-?>

(" ) ( ) 4 )
S. cerevisiae If‘> Construct E> Sequence
MRNA Library Library
N\ / J - /

\_
I}/Evaluation \JS D
4 Quality ) - Ease A

= Complexity

= Strand specificity

= Evenness of coverage
= Agreement with known

annotation \ j

tExpression Profiling /

= Library construction (Lab)
= Computational analysis




Evaluating RNA-seq methods: Strand specificity

Antisense orientation reads measure strand specificity

Sense orientation
(as annotated) Antisense orientation

> — —

—_— —_— . —_— - -

------

—_— —
Overlaps Does not
two genes, overlap

(not counted) known genes



Evaluating RNA-seq methods: Evenness of
Coverage

Even coverage: low CV

— —
— —— - —_—

» Coefficient of Variation (CV) = standard deviation / mean
& is a measure of evenness



Strand specificity and Evenness of Coverage

Il /vg. cocffisient of variation fortop 50% expressad genes
@ % antsense
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ligation RNA
ligation
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Average coefficient of variation

NNSR Bisulfita Published 3" split

dUTP  adaptor

» For both measures, lower is better

»dUTP library performs best



Evaluating RNA-seq methods: coverage gaps

Performance assessed by comparison with known
annotation at ends
5 end —_ — 3"end
coverage coverage

Segmentation
(gaps in coverage)

Continuity of coverage of annotated transcripts



Evaluating RNA-seq methods: coverage gaps

5 Coverage gaps
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Molecular Biology for RNA-seq:
this approach will probably work for you

1) RNA isolation

! rRNA rRNA (>75% cellular RNA)

57

2) Negative selection of rRNA

single stranded rDNA

3) Fragment RNA

4) Anneal random hexamer DNA primers

5) Reverse Transcription

@ @

6) Second strand synthesis

= @

7) Blunt end repair and phosphorylate 5’

P o o —
I

8) A-tail

8§ T iy 3
A —
P

9) Ligate sequencing adapters

I TN

10) Digest dUTP strand

rd %

11) PCR
First cycle: only one primer anneals.

AN

barcode

Second cycle: generates a product representing a
single strand of what will be the final amplicon.

barcode



Considerations: sequencing depth

High Expressed Genes Low Expressed Genes
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Source: Rahul Satija & Joshua Levin

Human CML
K-562 cell line

Accurate expression :

Estimate from down-sampled
dataset is within X% of FPKM
estimate from full dataset
(130 million read pairs)

— 30%

— 50%

— 80%

» More coverage needed to accurately measure levels for low expressed

genes

» 30M read pairs probably sufficient for expression levels (in this case)

» More needed for splicing isoform levels or allele-specific expression



Considerations: biological and technical replicates

Technical replicates

—t
o
"~

§ | 2098 Techniqal replicates —
= sequencing 2 independent
g 10 cDNA libraries from the
£ 10 same RNA —
c 1 usually not necessary
£ 00
Biological replicates —

0.1 1 10 100 1,000 10,000
Brain technical 1 (RPKM) necessary

Example from Mortazavi et al. (2008) Nature Methods 5:621

Additional reading: Auer & Doerge (2010) “Statistical design and
analysis of RNA sequencing data” Genetics 185:405



(a) Increase in biological replication significantly increases the number of DE genes

identified.
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Yuwen Liu et al. Bioinformatics 2014;30:301-304
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(a—c) The CV of logCPM for high expression level genes (a), medium expression level genes
(b) and low expression level genes (c) (see Section 2 for definition).
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Post-sequencing QC and analysis

« After library prep:
— RNA-seq Quality control
— Processing pipelines
— Normalization methods
— Differential gene expression analysis



RNASeQC - quality control pipeline

Total, unique and duplicate reads

(a)
« Mapped reads and mapped unique reads
e rRNA reads

« Transcript-annotated reads:

e Expressed transcripts: count of transcripts
with reads >1.

« Strand specificity

« Sample reports: calculates a number of metrics useful for
assessing quality of libraries and depth of sequencing.

« Comparison of metrics between samples.

http://bioinformatics.oxfordjournals.org/content/28/11/1530.long



Variations of RNA-seq mapping strategies

(a) Genome (b) Transcriptome () Reference-free
mapping mapping assembly
Reads Reads Reads
GWWITW Unyamodmpporlam DeBruyngraphslTrluly
STAR
Mapping to Mapping to Assembly into
genome transcriptome transcripts
Cufflinks Ungapped mapper | Bowtle
RSEM, \ 4
with GFF without GFF Kalllsto Map reads back
Transcript Transcript Transcript GTF-based | Ccem
identification & discovery & identification & 4
counting counting counting Counting
Homologybandlalumo Homology based | Blast2GO
'




Mapping issues/options

Issues
« With RNA-seq we really want to align to the transcriptome.

« Splice junction reads will not align to the genome.
« The longer the reads, the more likely one will hit a junction.

* Alignment of genomic sequencing vs RNA-seq

e E__—a | ——— ]
[ m— | commmmm—- ] [ —— ]

| cm— == e
o W R — | R m—

Mapping to genome

Cole Trapnell & Steven L Salzberg, Nature Biotechnology 27, 455 - 457 (2009)



Mapping issues/options

Issues

o With RNA-seq we really want to align to the transcriptome.
« Splice junction reads will not align to the genome.

o The longer the reads, the more likely one will hit a junction.

Options

« Don’t worry about it, align to the genome.
o Build a junction library, and align to that.

o Create your own transcriptome “de novo”.
o Combination of first two or all three



Tuxedo tools software suite

Bowtie (fast short-read alignment) N
TopHat (spliced short-read alignment) s
Cufflinks (transcript reconstruction from alignments) -t

l

Cuffdiff (differential expression analysis)

l

CummeRbund (visualization & analysis)




The TopHat pipeline for de novo splice junction
discovery.

J
!

if

Map reads to whole
genome with Bowtie

=

Collect initially
unmappable reads

"|||||"H"‘l
|'|||“
||'||I

I
il

_ Assemble
consensus of
covered regions

— Generate possible

—_— splices between

gt a9 ag neighboring
exons

Y

Build seed table
index from

unmappable reads

Map reads to possible
splices via seed-and-

extend
Cole Trapnell et al. Bioinformatics 2009;25:1105-1111

gt ag ag
© 2009 The Author(s)



Mapping issues/options: Alignment options

ORIGINAL PAPER . csamcitamatcsiorzo

Sequence analysis

TopHat: discovering splice junctions with RNA-Seq
Cole Trapnell'-*, Lior Pachter? and Steven L. Salzberg'

:‘Cente' for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742 and
2Department of Mathematics, University of California, Berkeley, CA 94720, USA

Raceived

Octeber 23, 2008; revised on February 24, 2009; acceptad on February 26, 2009
Advance S publication March 16, 2009

Associate Editor: Ivo Hofacker
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Sequence analysis Advance Access publication October 25, 2012

STAR: ultrafast universal RNA-seq aligner

Alexander Dobin'*, Carrie A. Davis', Felix Schlesinger’, Jorg Drenkow', Chris Zaleski’,
Sonali Jha', Philippe Batut', Mark Chaisson? and Thomas R. Gingeras’

'Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA and ®Pacific Biosciences, Menlo Park, CA, USA
Associate Editor: Inanc Birol

HISAT: a fast spliced aligner with low memory
requirements

Daehwan Kim!2, Ben Langmead!-3 & Steven L Salzberg!-3

ICenter for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. ?Department
of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. 3Department of Computer Science, Johns Hopkins University,
Baltimore, Maryland, USA. Correspondence should be addressed to D.K. (infphilo@gmail.com), B.L. (langmea@cs.jhu.edu) or S.L.S. (salzberg@jhu.edu).

RECEIVED 7 AUGUST 2014; ACCEPTED 16 JANUARY 2015; PUBLISHED ONLINE 9 MARCH 2015; D01:10.1038/NMETH.3317

NATURE METHODS | VOL.12 NO.4 | APRIL 2015 | 357



Mapping issues/options: Alignment options

Table 1. Mapping speed and RAM benchmarks on the experimental
RNA-seq dataset.

Alignes illion ey ;;Jii:(}:hour Peak physical RAM, GB

6 threads 12 threads 6 threads 12 threads
STAR 309.2 549.9 27.0 284
STAR sparse 227.6 423.1 15.6 16.0
TopHat2 8.0 10.1 4.1 11.3
RUM 5.1 7.6 26.9 53.8
MapSplice 3.0 3.1 33 33
GSNAP 1.8 2.8 25.9 27.0

Star is much faster, but requires more resources (RAM)

HISAT2 was released after this benchmarking and it is my preferred RNA-seq mapping software



Reads procassed per second

HISAT2:

HISAT: a fast spliced aligner with low memory
requirements

Daehwan Kim!2, Ben Langmead!-? & Steven L Salzberg!-3

ICenter for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. 2Department
of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA. *Department of Computer Science, Johns Hopkins University,
Baltimore, Maryland, USA. Correspondence should be addressed to DK. (infphilo@gmail.com), B.L. (langmea@cs jhu.edu) or S.L.S. (salzberg@jhu.edu).

RECEIVED 7 AUGUST 2014; ACCEPTED 16 JANUARY 2015; PUBLISHED ONLINE 9 MARCH 2015; D01:10.1038/NMETH.3317

NATURE METHODS | VOL.12 NO.4 | APRIL 2015 | 357

Hierarchical Indexing for Spliced Alignment of Transcripts

Table 2 | Run times and memory usage for HISAT and
other spliced aligners

121,331 110494 Program Run time (min) Memory usage (GB)
100,000 - HISATx1 22.7 4.3
81,412 HISATx2 41.7 4.3
HISAT 26.7 4.3
56,387 STAR 25 28
50,000 - 40,639 STARx2 50.5 28
GSNAP 291.9 20,2
146N Olego 989.5 3.7
0 848 [ | 1954 TopHat2 1,170 4.3

Y T T Y T T Y T Run times and memory usage for HISAT and other spliced aligners to align 109 million
«t °Q9 7? v?‘ & c};‘\ ,\ﬁ' 90 101-bp RNA-seq reads from a lung fibroblast data set. We used three CPU cores to run the
Q{v?' (o) 0%‘\ "'} év?‘ O @Q ,\OQQ' programs on a Mac Pro with a 3.7 GHz Quad-Core Intel Xeon ES processor and 64 GB of RAM.

HISAT2 is faster HISAT2 uses less memory space



HISAT2: workflow with new tuxedo tools

PROTOCOL

Transcript-level expression analysis of RNA-seq
experiments with HISAT, StringTie and Ballgown

Mihaela Pertea!:2, Dachwan Kim!, Geo M Perteal, Jeffrey T Leek? & Steven L Salzberg!*

StringTie enables improved reconstruction of a
transcriptome from RNA-seq reads

Mihaela Pertea'-2, Geo M Pertea?, Corina M Antonescu'2, Tsung-Cheng Chang®*, Joshua T Mendell*-3 &
Steven L Salzberg!-26.7

Ballgown bridges the gap between
transcriptome assembly and
expression analysis



HISAT2: workflow with new tuxedo tools

Map to genome

[ HISAT |

Construct transcriptome
and assign reads to isoforms.

[ StringTie

Bulk Differential gene

. : Isoform level Diff. Gene.
expression analysis

Expr. analysis

EdgeR / DEseqg ] [ Ballgown ]




De novo transcript assembly with or without a

genome

RNA-Seq reads
— o & — c
0 5= = 5 B =
i | -

Align reads to Assemble transcripts
genome de novo

I
0
I

Genome

Assemble transcripts Align transcripts

from spliced alignments to genome
Y
[ e =] | More abundant [ s
[ B (I s i
(i =" ] Less abundant

| | | |

Haas and Zody, NBT, 2010

‘I]illlll'('
biotechnology

» Irinity

Grabherr, Haas, &
Yassour et al., Nature
Biotechnology, 2011




Normalization methods

« Total count Normalization (FPKM, RPKM, TPM)

— By total mapped reads
* F=unique Fragments
e R=Reads
o T =Transcripts

« Upper quartile normalization
— Read count of genes in upper guartile

« Housekeeping genes
e Trimmed mean (TMM) normalization

Added level:
o Spike-in controls



Library characteristics, ERCC quantification,
and coverage, transcript counting.

ERCC = External RNA Control Consortium

Linear standards Allow calculating average transcripts /cell
o ] V_
/B - 8 & %] B
- S = N
= :Aﬁgggnse 2 o gy
3 g 8 g o
3 - g 3
'§ ® 8 o g ®
& 1—- g) "é-,- E (.l\.l-
- D+
o (4 A h
E- +, ® ?’- J
181" 189 T 167 ' 185 t 1
concentration 0: ERCC in pool14 1e-2 1et+ 1et2 1etd 1e-2 1e+l} 1et2 1et4
(nmol/ul*length) FPKM average copies per cell

Lichun Jiang et al. Genome Res. 2011;21:1543-1551

©2011 by Cold Spring Harbor Laboratory Press



Gene expression analysis workflows

Microarray RNA-Seq

Hybridization. .

Scanning images. Sequencing.

Quantification. Base call.

Raw intensities I I Short reads
Preprocessing: Al;gned to
Background correction, :’::‘ g\l";n_csi ?enor;lz. o
Normalization, — 1Isoform XOn-
Summarization. junction sequences.

Transcripts (continuous) Transcripts (counts) ranscripts

| Statistical analysis .—’l l‘—1 Statistical analysis ]

Differentially
expressed
transcripts

I Expression levels of I Expression levels of I_' Novel
t

Cellular
functional/pathway
analysis

http://www.labome.com/method/RNA-seq-Using-Next-Generation-Sequencing.html



Differential gene expression analysis: 3 popular methods

Differential gene and transcript expression analysis
of RNA-seq experiments with TopHat and Cufflinks
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Gene expression

edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data
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DE Analysis: Options and trade offs

Table 1 Number of false differential expression genes predicted by each method at adjusted P values (or false
discovery rate) <0.05 separated by gene read count quantiles.

Expression quantile Cuffdiff DESeq edgeR limmaQN limmaVoom PoissonSeq baySeq
100% (high expression) 28 5 3 0 0 7 1
75% 76 6 0 0 0 0 0
50% 84 27 1 2 0 0 0
25% (low expression) 5 9 0 87 0 0 0
Total 193 47 4 89 0 7 1

Table 2 Comparison of methods.

Evaluation Cuffdiff DESeq edgeR limmaVoom PoissonSeq baySeq

Normalization and clustering All methods performed equally well

DE detection accuracy measured by AUC at increasing  Decreasing Consistent  Consistent  Decreasing  Increases up to log Consistent

gRT-PCR cutoff expression change < 2.0

Null model type | error High Low Low Low Low number of FPs Low
number of number of number of Number of number of
FPs FPs FPs FPs FPs

Signal-to-noise vs P value correlation for genes Poor Poor Poor Good Moderate Good

detected in one condition

Support for multi-factored experiments No Yes Yes Yes No No

Support DE detection without replicated samples Yes Yes Yes No Yes No

Detection of differential isoforms Yes No No No No No

Runtime for experiments with three to five replicates Hours Minutes Minutes Minutes Seconds Hours

on a 12 dual-core 3.33 GHz, 100 G RAM server

AUC, area under curve; DE, differential expression; FP, false positive.

Rapaport F et al. Genome Biology, 2013 14:R95




Replicate 1

Read depth and DE expression calling

More variation in genes with lower counts
Fold-change scatter plot
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Length bias in RNA-seq

=
H@H

For genes of the same expression level longer transcripts will have more reads

* There is more information for longer transcripts than shorter ones.
* Higher power to detect DE in longer transcripts.
« This length bias is not present in microarray gene expression data.
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Proportion of DE genes v gene length, # reads

3 lanes treated vs
4 untreated.

LNCaP cells

Fisher exact
test, FDR < 10-4.

Proportion DE
0.15 0.20 0.25
| | |

0.10
|

0.05
|

0.00
|

] ] 1 I
0 2000 4000 6000

Gene length (bases)

Analysis: Young et al, Gen. Biol. 2010.

8000

Proportion DE

~ | - —
o —_ o
B) .
o]
o
©
o o]
n
o O
o
=
o

0.3
||
Q0. o

O
i
o~ [
N
g
Q
o
T T T T T T T T
0 500 1500 2500 3500

Number of reads

Data : Lovci et al, PNAS 2008 >3



Dealing with the length bias

It is not easy to do anything about this bias without throwing away
data.

It has the capacity to bias downstream gene set and Gene Ontology
analyses.

Young et al, Gen. Biol. 2010 and others have shown using p-values
weighted on curves similar to previous slides (based on gene lengths),
can help to alleviate some of the bias.

The problem is still largely ignored by most of the standard DE
expression software. However, DESeg2 recently added including gene
length as an optional parameter.



Useful links for transcriptome and DE analysis

Video:

WATCH THIS: https://www.youtube.com/watch?v=5NiFibnbE8o#action=share
Papers:

TopHat/cufflinks:
http://www.nature.com/nprot/journal/v7/n3/pdf/nprot.2012.016.pdf
HISAT/StringTie/Ballgown — papers and tutorial
http://www.nature.com/nmeth/journal/v12/n4/full/nmeth.3317.html
http://www.nature.com/nbt/journal/v33/n3/full/nbt.3122.html
http://www.nature.com/nbt/journal/v33/n3/pdf/nbt.3172.pdf
http://www.nature.com/nprot/journal/v11/n9/pdf/nprot.2016.095.pdf

edgeR:

http://bioinformatics.oxfordjournals.org/content/26/1/139.full.pdf+html

DEseq2:

http://genomebiology.com/content/pdf/s13059-014-0550-8.pdf

Tutorials:

Tophat:

http://www.nature.com/nprot/journal/v7/n3/pdf/nprot.2012.016.pdf

EdgeR:
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://cgrlucb.wikispaces.com/file/view/edgeR_Tutorial.pdf

DEseq2:
http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.pdf
http://dwheelerau.com/2014/02/17/how-to-use-deseq2-to-analyse-rnaseqg-data/



https://www.youtube.com/watch?v=5NiFibnbE8o%23action=share
http://www.nature.com/nprot/journal/v7/n3/pdf/nprot.2012.016.pdf
http://www.nature.com/nprot/journal/v11/n9/pdf/nprot.2016.095.pdf
http://www.nature.com/nprot/journal/v11/n9/pdf/nprot.2016.095.pdf
http://www.nature.com/nbt/journal/v33/n3/pdf/nbt.3172.pdf
http://www.nature.com/nprot/journal/v11/n9/pdf/nprot.2016.095.pdf
http://bioinformatics.oxfordjournals.org/content/26/1/139.full.pdf+html
http://www.nature.com/nprot/journal/v7/n3/pdf/nprot.2012.016.pdf
http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
http://cgrlucb.wikispaces.com/file/view/edgeR_Tutorial.pdf

After the next R lecture:

Exercises:
Alignment, summarization and normalization of RNA-seq data



